
An Efficient Interference Management Framework
for Multi-hop Wireless Networks

Lei Shi∗, Yi Shi†, Yuxiang Ye∗, Zhenchun Wei∗, Jianghong Han∗
∗School of Computer and Information, Hefei University of Technology, Hefei, Anhui, China
†Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract—Interference management is an important problem
in wireless networks. In this paper, we focus on the successive
interference cancellation (SIC) technique, and aim to design an
efficient cross-layer solution to increase throughput for multi-hop
wireless networks with SIC. We realize that the challenge of this
problem is its mixed integer linear programming formulation,
which has bunches of integer variables. In order to solve
this problem efficiently, we propose an iterative framework to
improve the solution for integer variables and use a linear
programming to solve the problem for other variables. Our
analysis indicates that the proposed algorithm is with polynomial-
time complexity. Simulation results show that SIC can increase
throughput of a multi-hop wireless network by around 300%.

I. INTRODUCTION

Interference is a unique problem in wireless networks due
to the shared wireless medium. In particular, collisions may
occur when more than one nodes send data simultaneously.
Traditional mechanisms, e.g. TDMA, CDMA, FDMA, CSMA,
CSMA/CA, adopt the so-called “interference avoidance” tech-
nique to avoid collisions by transmitting data in different or-
thogonal channels (built in time-, space-, and/or code-domain,
or combination of these domains). Although practical, these
methods cannot achieve the maximum throughput theoretical-
ly.

Recently there is a growing interest in exploiting inter-
ference (rather than always avoiding it) to increase network
throughput. Such interference management schemes can be
categorized into three types [1]: interference cancellation [2],
interference randomization [3] and interference coordination
[3]. In this paper we focus on interference cancellation, where
a receiver tries to decode strong interference and remove
it from the received signal. The interference cancellation
can be realized through several techniques, such as succes-
sive interference cancellation (SIC) [4], parallel interference
cancellation (PIC) [5], iterative interference cancellation [6].
Among them, the SIC technique is preferred nowadays due to
its simplicity and effectiveness [4]. Thus, we focus on SIC in
this paper.

SIC is a powerful physical layer technique based on signal
processing. However, most traditional techniques and protocol-
s in upper layers (e.g., link layer, network layer) are developed
according to interference avoidance schemes and thus may not
work well with SIC. Some previous works have been done
to develop upper layer techniques working with SIC [7], [8],
[9], [13], [14]. But most of them are focused on the link
layer (see e.g., [9]), or on the network layer with a relatively

simple network model (see, e.g., [8], [13]). To date, results on
how to apply SIC in a multi-hop network remain very limited
due to the difficulty of designing a cross-layer (from physical
layer to network layer) optimal solution with SIC. Jiang et
al. [16] built a cross-layer optimization framework, including
routing, scheduling, and SIC, with the goal of increasing the
throughput. The formulated problem is a mixed integer linear
program (MILP), which may not be solved efficiently when
there are many integer variables.

In this paper, we develop an efficient cross-layer solution for
multi-hop wireless networks. We first formulate the through-
put maximization problem in consistent with the interfer-
ence avoidance scheme. Although the formulated optimization
problem is an MILP, it can be solved by some commercial
solvers (e.g., [11]) to provide a performance benchmark.
Secondly, we address the throughput maximization problem
with SIC. We can also formulate this problem as an MILP. But
this MILP has much more integer variables than the former
one, and thus cannot be solved efficiently by existing solvers.
This problem is mainly caused by a large number of integer
variables for scheduling decisions. We build an iterative frame-
work to overcome this problem. Once the scheduling problem
is solved, the remaining problem can be formulated as a linear
programming (LP), which can be solved in polynomial-time.
Simulation results show that our algorithm can achieve about
300% performance improvement than the optimal solution
acquired through the interference avoidance technique.

The rest of the paper is organized as follows. In Section II,
we solve the throughput maximization problem for the inter-
ference avoidance scheme. Section III designs an algorithm
for a multi-hop network through SIC. We also analyze the
polynomial-time complexity of this algorithm. In Section IV,
we present simulation results and show the efficiency of our
algorithm. Section V concludes this paper.

II. TRADITIONAL MULTI-HOP WIRELESS NETWORKS

In this section we describe a throughput maximization
problem for traditional multi-hop wireless networks using the
interference avoidance scheme. Its solution will be used as
a performance benchmark when comparing with the solution
with SIC.

Consider a multi-hop wireless network with n nodes
s1, s2, · · · , sn and one base station (see Fig. 1). Each node
transmits data to the base station via either single- or multi-
hop transmissions. Suppose that all the nodes have the same

978-1-4673-5939-9/13/$31.00 ©2013 IEEE

2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS

1129

2

Fig. 1. The topological structure of a multi-hop random network.

transmission power P and bandwidth W . Denote N as the set
of n nodes. To simplify discussion, the base station is denoted
by s0, as well.

A. Physical Layer and Link Layer Model

In this paper, we only discuss the scheduling problem in
time domain, although our approach can be extended to space-
or code domain. Denote tk, k = 1, 2, · · · , h, as time slots.
Define a binary scheduling variable xij [k] for link si → sj in
time slot tk, which is one if node si transmits data to sj in
time slot tk and is zero otherwise.

In a time slot tk, a node si can transmit to (and receive
from) if any, one node, i.e.,∑

sl∈Ti

xli[k] +
∑
sj∈Ti

xij [k] ≤ 1 (si ∈ N, 1 ≤ k ≤ h) , (1)

where Ti is the set of all neighboring nodes in the transmission
range RT of node si.

In accordance with the protocol model, when node si
transmits data to sj , any node sl ∈ Ij cannot transmit
simultaneously, where Ij is the set of all neighboring nodes
in the interference range RI of node sj . Then we have

xij [k] +

∑sl ̸=si
sl∈Ij

∑
sm∈Tl

xlm[k]

|Ij | − 1
≤ 1

(si ∈ N, sj ∈ Ti, 1 ≤ k ≤ h) , (2)

where |Ij | is the number of nodes in the set Ij .

B. Problem and Its Solution

We now introduce a set of unicast communication sessions
in the network. Each session is from one node si to the base
station and has a minimum data rate requirement r(si). In
this paper, we consider the problem of maximizing a common
scaling factor K such that data with rate Kr(si) can be
transmitted from node si to the base station. Other objective
functions can be treated similarly. Denote rij , si ∈ N, sj ∈ Ti,
as the average data rate from node si to node sj . Then we have
the following relationship for flow rates at a node si.∑

sl∈Ti

rli +Kr(si) =
∑
sj∈Ti

rij (si ∈ N) (3)

Denote C as the data rate by a successful transmission.
Since flow rate on any link cannot exceed the achievable
average link rate, we have

rij ≤
1

h

h∑
k=1

(C · xij [k]) (si ∈ N, sj ∈ Ti) . (4)

The problem can be formulated as follows.

max K
s.t. (1), (2), (3), (4)
xij [k]∈{0, 1}, rij ,K≥0 (si∈N, sj ∈Ti, 1≤k≤h).

(5)

Due to binary variables xij [k], this is a mixed integer linear
programming (MILP) problem, which is NP-hard in general
[10]. Although we can obtain optimal solution by some
commercial solver, e.g., CPLEX [11], the complexity is very
high when the number of integer variables is large.

III. MULTI-HOP WIRELESS NETWORKS WITH SIC

In this section we consider the same throughput maximiza-
tion problem while SIC is applied. In this case, a receiver can
decode signals from multiple transmitters sequentially. That is,
it tries to decode the strongest signal first. If the corresponding
SINR (signal-interference-and-noise-ratio) is less than β, then
even the strongest signal cannot be decoded. Otherwise (the
strongest signal is decoded), the receiver can remove the
strongest signal from its total received signal. The benefit of
SIC is that by removing the strongest signal, we now have
an improved SINR for the remaining interfered signals. Then
the receiver tries to decode the second strongest signal. If the
second strongest signal is decoded, the receiver can remove
this signal and then tries to decode the third strongest signal.
This process is repeated until all signals are decoded or no
further signals can be decoded.

In general, when a node sj tries to decode the signal
received from node si in a time slot tk, all stronger signals
have already been decoded and removed according to SIC.
Thus, the improved SINR can be calculated by

SINRij [k] =
gijP∑glj≤gij

sl ̸=si
(gljP

∑
sm∈Tl

xlm[k])+N0

, (6)

where
∑

sm∈Tl
xlm[k] = 1 if sl is transmitting data to some

node in time slot tk and
∑

sm∈Tl
xlm[k] = 0 if sl is not

transmitting in time slot tk. If this improved SINR is no less
than β, node sj can decode signal from node si.

From the process mentioned above, we can conclude that
the problem formulation with SIC will be much more complex
than (5). It is very challenging to find an optimal solution for
multi-hop wireless networks with SIC. In this paper, we will
propose a heuristic algorithm with much less complexity while
good in performace.

A. Main Idea

We first analyze the difficulty to solve a problem with SIC.
Similar to (5), binary scheduling variables xij [k] can make the
problem non-convex and thus NP-hard in general. If we can

1130

3

1. Let S = TB , d = 1, and d(si) = d for each si ∈ S.
2. while (S ̸= ∅) {
3. Let d = d+ 1 and Ŝ = ∅.
4. while (S ̸= ∅) {
5. Remove a node si from S.
6. Add each node sj ∈ Ti with undefined d(sj) in Ŝ and

let d(sj) = d. }
7. Let S = Ŝ. }

Fig. 2. Identify the minimum hop distance for all nodes.

find a way to determine these xij [k] values, then the remaining
problem is only on continuous variables rij and K, i.e.,

max K
s.t. (3), (4)

rij ,K ≥ 0 (si ∈ N, sj ∈ Ti) .
(7)

This formulation is a linear programming (LP) problem, and
can be solved in polynomial-time[12].

Now the question is how to determine the value of each
xij [k]. The main idea and the basic steps of our algorithm is
as follows.

I. Initialize K = 0 and all xij [k] = 0. For each node,
establish an initial path to the base station and time slots
assignment for each link on this path, such that (1) holds
and each link has an improved SINR no less than β.

II. Under current xij [k] values, calculate the maximum K
and all rij values by (7). Note that by (7), routing
solution (rij values) may be updated and thus K may
be increased.

III. If calculated K is equal to the previous K, then our
algorithm terminates. Otherwise, try to improve the
current scheduling solution (xij [k] values) and go to
Step II.

There are two challenges in the above algorithm. First, how
to establish an initial path for each node in Step I? Second,
how to improve the current scheduling solution in Step III?
These challenges will be addressed in Sections III-B and III-C.

B. Establish Initial Paths

Before we establish an initial path to the base station for
each node, we first obtain the minimum hop distance to
the base station for each node. For simplicity, we will use
hop distance, instead of the minimum hop distance, in the
following discussion. These hop distances can be calculated
iteratively. In the first iteration, any neighboring node of the
base station has hop distance 1. In the (d−1)-th iteration, we
labeled all nodes with hop distance d − 1. Then in the d-th
iteration, we consider the neighboring nodes of those nodes
with hop distance d − 1. Each of these neighboring nodes,
if its hop distance is not calculated yet, has hop distance d.
This process terminates until all nodes have their hop distances
calculated. To simplify discussion, we say that the base station
B has hop distance 0. The pseudo-code to calculated the
minimum hop distance for all nodes is given in Fig. 2.

One possible approach to establish an initial path to the
base station for each node is using the minimum-hop path.
The benefit of using the minimum-hop path is that time slots

1. Let minSINR = 0.9 · β and k∗ = 0.
//Suppose time slots 1 to ĥ are used by some links.

2. for (k = 1; k ≤ ĥ; k++) {
3. Try to assign time slot tk to link (si, sj) (let xij [k] = 1).
4. if SINRij [k] by (6) is less than β {
5. Let xij [k] = 0.
6. continue; }
7. Let minSINR[k] = SINRij [k].
8. for each link (sl, sm) with xlm[k] = 1 {
9. if SINRlm[k] by (6) is less than β {
10. Let xij [k] = 0 and minSINR[k] = 0.
11. break; }
12. if (SINRlm[k] < minSINR[k])
13. Let minSINR[k] = SINRlm[k]. }
14. if (minSINR[k] ≥ β) and (minSINR[k] > minSINR)
15. Let minSINR = minSINR[k] and k∗ = k. }
16. if (k∗ > 0)
17. Assign time slot tk∗ to link link (si, sj).
18. else
19. Assign time slot tĥ+1 to link link (si, sj).

Fig. 3. Time slot assignment for a new link (si, sj).

assignment can be easier due to the minimum number of
links. We can obtain the minimum-hop path by letting a node
with hop distance d choose one of its neighboring nodes with
distance d− 1 as its next hop node. Once a node si chooses
node sj as its next hop node, a new link is added in the
network.

Establishing a path also includes time slots assignment on
each of its links, which is performed whenever a new link is
added in the network.

• When a new link is added, we first try to assign a time
slot already used by some link. If there is a conflict after
this assignment (i.e., some existing links or the new link
with SINR < β), then we should consider another time
slot. Otherwise, an available time slot is found.

• It is possible that we find multiple time slots for a new
link. We used the minimum improved SINR (see (6))
among all links in a time slot as a metric and choose
the time slot that can maximize the minimum improved
SINR as the most appropriate time slot.

• It is possible that all the used time slots cannot be chosen.
In this situation, we allocate a new time slot for this link.

The pseudo-code to assign a time slot for a new link is given
in Fig. 3.

Once we establish an initial path for each node and assign
a time slot for each link, we can calculate the maximum K
and rij values by (7).

C. Increase Bottleneck Node Throughput

To increase K value, we should identify bottleneck links
and bottleneck nodes. A link si → sj is a bottleneck link if
rij = 1

h

∑h
k=1(C · xij [k]), i.e., there is no residual capacity

(defined as 1
h

∑h
k=1(C · xij [k]) − rij) on this link. A node

si is a bottleneck node if all its existing out-going links are
bottleneck links. For a bottleneck node, if we can assign
an additional time slot to one of its existing links or add a
new out-going link, then the throughput at this node can be
increased. Meanwhile, K value may also be increased.

1131

4

1. Determine residual node capacity Zj for each sj ∈ Ti.
2. Check si’s neighboring nodes from the largest residual capacity

to the smallest residual capacity {
//Suppose the current checked node is sj .

3. if link (si,sj) exists {
4. Try to assign an additional time slot by an algorithm

similar to Fig. 3, where we skip the time slots already
assigned to link (si, sj).

5. if the assignment is success
6. return; }
7. else { //link (si,sj) does not exist
8. Try to add link (si, sj) and assign a time slot by the

algorithm in Fig. 3.
9. if a new link is added
10. return; } }
11. We cannot improve node si’s throughput. The entire algorithm

terminates.

Fig. 4. Increase bottleneck node si’s throughput.

Based on the above discussion, in each iteration, we can
either assign one more time slot on the existing link of a
bottleneck node or add a new link to increase K. Therefore,
we have the following problems:

Problem 1: Should we use a new time slot (on an existing
link) or a new link (with an assigned time slot) to increase
K?

Problem 2: If we use a new time slot, which time slot should
be assigned on which existing link?

Problem 3: If we use a new link, which new link (and which
time slot) should be added?

To answer these problems, we need to analyze possible
improvement after using a new time slot or a new link. We
introduce the following definition.

Definition 1: The residual node capacity Zi of node si is
the maximum possible increase on node si’s data rate to base
station s0 by considering all existing paths from si to base
station s0.

The residual node capacity can be determined by a maxi-
mum flow problem [10]. That is, we can define an auxiliary
graph with the same set of nodes and links, where the capacity
on each link is set as its residual link capacity. Then the
maximum flow from si to base station s0 in this auxiliary
graph is the residual node capacity Zi.

We now consider possible improvement under the following
two cases.

• Possible improvement by a new time slot. For each
out-going link (si, sj), we can revise the algorithm in
Fig. 3 to determine a suitable time slot. That is, instead
of considering all time slots, we only consider time slots
not used by link (si, sj). Once a new time slot is found,
possible improvement on link (si, sj) is C

h while possible
improvement from node sj to the base station is Zj . Thus,
possible improvement is min{C

h , Zj}. Note that for the
case of sj = s0, possible improvement is C

h .
• Possible improvement by a new link. For a new link,

we can apply the algorithm in Fig. 3 to determine a
suitable time slot. Once a new time slot is found, possible
improvement is again min{C

h , Zj} if sj ̸= s0 or C
h if

sj = s0.
Based on the above analysis, we can address Problems 1 – 3

by a uniform approach. That is, we check a bottleneck node
si’s neighboring nodes one by one, from the node with the
largest residual capacity to the node with the smallest residual
capacity. For the checked node sj , if link (si, sj) already
exists, then we consider to assign a new time slot, otherwise
we consider to add this link with an assigned time slot. This
procedure terminates if an additional time slot is found for an
existing link, a time slot is found for a new link, or we cannot
improve node si’s throughput. The pseudo-code to increase
bottleneck node si’s throughput is given in Fig. 4.

D. Complexity
We first show that the complexity in each iteration is

polynomial. In the first iteration, we need to identify hop
distance for all nodes, select a next hop node for each node
and then assign a time slot for this link, and identify initial
K.

• To identify hop distance for all nodes, we need to visit
all neighboring nodes of each node. The complexity is
O(E) = O(n2), where E is the number of all possible
links.

• The complexity to select a next hop node for each node
is O(n).

• The complexity to assign a time slot to the first link is
O(1). To analyze the complexity to assign a time slot for
the (e+ 1)-th link, we assume that previous e links use
ĥ time slots. When we consider a used time slot tk for
the (e+1)-th link, we need to check up to ek +1 SINR
values, where ek is the number of links in this time slot.
In the worst case, we may check up to

∑ĥ
k=1(ek +1) =

e+ ĥ SINR values and then decide to assign a new time
slot. The complexity is O(e+ ĥ+ 1) = O(e+ h). Thus,
the total complexity for time slot assignment is at most
O(1) +

∑E
e=2 O(e + h) = O(1) + O(E2) + O(hE) =

O(n4 + hn2).
• The complexity of solving an LP in (7) is O(N3

v) [10]
where Nv is the number of variables in (7). Since Nv =
O(N2), O(N3

v) = O(n6).
The overall complexity in the first iteration is O(n2)+O(n)+
O(n4 + hn2) +O(n6) = O(n6 + hn2), which is polynomial.

In each of the subsequent iterations, we need to identify
bottleneck node, calculate possible improvement of each of
its neighbors, sort these neighbors, either assign a new time
slot or add a new link, and update K.

• The complexity to identify bottleneck node is O(E) =
O(n2).

• To calculate possible improvement for a neighboring
node, we need to solve a maximum flow problem. Some
algorithms (e.g., Push-relabel algorithm with FIFO vertex
selection rule) for the maximum flow problem have
complexity O(n3). The total complexity for a node si’s
|Ti| neighbors is |Ti|O(n3) = O(n4).

• Sorting |Ti| neighbors has a complexity O(|Ti| ln |Ti|) =
O(n lnn).

• To analyze the complexity of assigning an additional time
slot for an existing link, we assume that other e−1 links

1132

5

200 400 600 800 1000

200

400

600

800

1000

Y(m)

X(m)

Base station

O

s1

s2

s3

s4

s5

s6

s7 s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18
s19

s20

Fig. 5. A 20-node network.

use ĥ time slots. We need to check up to e SINR values.
In the worst case, we may find that ĥ time slots are not
available and then assign a new time slot. The complexity
is O(ĥe+ 1) = O(hn2).
To analyze the complexity of assigning a time slot for a
new link, we assume that previous e links use ĥ time slots.
When we consider a used time slot, we need to check up
to e+1 SINR values. In the worst case, we may find that
ĥ time slots are not available and then assign a new time
slot. The complexity is O(ĥ(e+ 1) + 1 = O(hn2).
Thus, the total complexity to assign a new time slot or
add a new link is |Ti|O(hn2) = O(hn3).

• The complexity of solving an LP in (7) is again O(n6).
The overall complexity in a subsequent iteration is O(n2) +
O(n4)+O(n lnn)+O(hn3)+O(n6) = O(n6+hn3), which
is polynomial.

We then analyze the number of iterations. On one hand,
in the first iteration, n xij [k] values are set as one while in
each subsequent iteration, one additional xij [k] value is set as
one. On the other hand, the total number of xij [k] variables is
O(hE) = O(hn2). Thus, the number of iterations is at most
1 + O(hn2) − n = O(hn2). The overall complexity of our
algorithm is O(n6 + hn2) + (O(hn2) − 1)O(n6 + hn3) =
O(hn8 + h2n5), which is polynomial. Note that the purpose
of this analysis is to show the complexity is polynomial. The
obtained result is a loose upper bound on complexity while in
practice, the complexity can be much less.

IV. SIMULATION RESULTS

In this section we give simulation results to show the
performance of our algorithm. We also compare results with
and without SIC to show the advantage of SIC.

We consider multi-hop networks with 10 to 50 nodes
randomly deployed in a square region of 1000× 1000m. The
base station is deployed at (500, 500). Transmission power
is P = 1W and noise power is N0 = 10−10W. The SINR
threshold is β = 3. Channel bandwidth is W = 22MHz.
The number of time slots is equal to the number of nodes.

TABLE I
THE COORDINATES (IN M) AND THE r(si) VALUE (IN KBPS) OF EACH

NODE IN THE 20-NODE NETWORK.

i coordinates r(si) i coordinates r(si)
1 (301,394) 38 11 (685,492) 57
2 (453,309) 85 12 (79,445) 51
3 (639,614) 85 13 (203,162) 25
4 (335,181) 14 14 (166,919) 85
5 (278,596) 67 15 (175,713) 27
6 (177,224) 50 16 (719,839) 65
7 (183,737) 56 17 (321,772) 45
8 (790,770) 73 18 (194,643) 23
9 (645,268) 22 19 (73,627) 33
10 (644,450) 30 20 (445,205) 53

The required minimum data rate r(si) is between 10kbps and
100kbps.

To perform a fair comparison between the interference
avoidance scheme and SIC, we need to set an appropriate RT

value. We can identify RT by considering the ideal case when
there is no interference. Denote dij as the distance between
node si and node sj and gij as the channel gain between these
nodes. We consider a gain model g = d−λ, where d is the
distance between two nodes and λ = 4 is the path loss index.
When node si transmits data to sj with power P , the SNR is
SNRij = gijP/N0 = d−λ

ij P/N0 ≥ β. For the extreme case,

we have R−λ
T P/N0 = β, i.e., RT =

(
P

N0β

)1/λ

≈ 240m.
The interference range RI should be larger than RT . We set
RI = 320m.

We first present detailed results of a multi-hop network with
20 nodes in Section IV-A. Then we provide complete results
for all network instances with different number of nodes.

A. Results for a Multi-hop Network with 20 nodes

Consider a multi-hop network shown in Fig. 5. The coor-
dinates and the required minimum data rate r(si) are shown
in Table I.

Under the interference avoidance scheme, we have K =
15.6 by (5). With SIC, we have K = 63.9 by our algorithm.
Clearly, we can achieve a much better solution by using SIC.

The routing topologies under interference avoidance and
SIC are given in Fig. 6 and Fig. 7, respectively. The numbers
on each link represent the assigned time slots to this link.
From which we can see that with SIC, links can be active in
more time slots. For example, the link between nodes s14 and
s7 is active in only one time slot under interference avoidance
while this link can be active in three time slots under SIC. As
a result, throughput can be increased by using SIC.

B. Results for All Network Instances

We change the number of nodes n from 10 to 50, and
generate 20 different network instances randomly for each
n. Then we calculate the value K under the interference
avoidance scheme and the SIC scheme, and show the average
values for each n in Table II. All results can be calculated in
seconds when using our algorithm. It can be seen that by using
SIC, we can achieve about 300% improvement on throughput
for multi-hop networks with various number of nodes.

1133

6

200 400 600 800 1000

200

400

600

800

1000

Y(m)

X(m)O

s7

s14

1,9
,10
,12
,20

2
,1
4
,1
6

3,
6,
7

6
3
,4
,7

8

14 9

1

1
0

4

5

11

15

2
0

16

2

1
7

18

1
9

1

1
3

Fig. 6. Routing topology under interference avoidance.

TABLE II
OPTIMIZATION RESULTS FOR MULTI-HOP NETWORKS.

n Traditional K SIC K Improvement
10 37.8 156.7 314.55%
15 29.8 139.1 366.78%
20 23.2 100.0 331.03%
25 20.0 81.1 305.50%
30 16.7 70.8 323.95%
35 15.8 64.6 308.86%
40 14.9 59.2 297.32%
45 12.5 52.1 316.80%
50 11.7 48.3 312.82%

V. CONCLUSION

In this paper, we applied the SIC technique for interference
management in multi-hop wireless networks. We considered
a throughput maximization problem with a cross-layer design
of SIC at the physical layer, time slot assignment at the link
layer, and routing at the network layer. We identified that
the challenge of this problem is time slot assignment under
SIC, which yields a mixed integer linear programming (MILP)
formulation with many integer variables. To overcome this
challenge, we designed an iterative framework to efficiently
determine time slot assignment and solved the remaining
problem by a linear programming. We showed that the overall
complexity of our algorithm is polynomial. Simulation results
showed that throughput of a multi-hop wireless network can be
increased by about 300% by using SIC. Given this significant
performance improvement, we will further design distributed
algorithms in our future work.

ACKNOWLEDGMENTS

This work was supported in part by the Research Fund
for the Doctoral Program of Higher Education of Chi-
na (20090111120004, 20100111110004), the International
S&T Cooperation Program of Anhui Province of China
(10080703001), and the Natural Science Foundation of Jiang-
Su Province of China (BK2011236).

200 400 600 800 1000

200

400

600

800

1000

Y(m)

X(m)O

1,3
,7,
8,1
1,

12
,13
,15
,17
,

18
,19
,20

2
,9
,1
0
,1
5

3,
10
,1
3,

14
,1
7,
19

6
,2
0

2
,4
,9
,1
1
,1
2

1
4
,1
6
,1
8
,2
0

2,
16

5,6,8,10

5
,8 1,

4,
6

5

4,6

5,10

2,14

7

9
,1
6
,1
9

9

4
,6

10

8

7
,1
1

s7

s14

Fig. 7. Routing topology under SIC.

REFERENCES

[1] J.G. Andrews, “Further advancements for E-UTRA physical layer as-
pects,” in 3GPP TR 36.814. v9.0.0.

[2] S. Verdu, “Multiuser Detection,” Cambridge Univ. Press, 1998.
[3] R. Bosisio, U. Spagnolini, “Interference Coordination Vs. Interference

Randomization in Multicell 3GPP LTE System,” in Proc. IEEE WCNC,
pp. 824–829, Las Vegas, NV, March 31–April 3, 2008.

[4] J.G. Andrews, “Interference cancellation for cellular systems: A con-
temporary overview,” in IEEE Wireless Commun. Magazine, pp. 19–29,
April 2005.

[5] P. Patel, J. Holtzman, “Performance comparison of a DS/CDMA system
using a successive interference cancellation (IC) scheme and a parallel
IC scheme under fading,” in IEEE International Conference on Serving
Humanity Through Communications, pp. 510–514, New Orleans, LA,
May 1–5, 1994.

[6] X. Wang, H.V. Poor, “Iterative (Turbo) soft interference cancellation and
decoding for coded CDMA,” in IEEE Trans. on Communication, vol.
47, no. 7, pp. 1046–1061, July 1999.

[7] J. Blomer and N. Jindal, “Transmission capacity of wireless ad hoc
networks: Successive interference cancellation vs. joint detection,” in
Proc. IEEE ICC, 5 pages, Dresden, Germany, June 14–18, 2009.

[8] E. Gelal, K. Pelechrinis, T.S. Kim, I. Broustis, S.V. Krishnamurthy,
and B. Rao, “Topology control for effective interference cancellation
in multi-user MIMO networks,” in Proc. IEEE INFOCOM, 9 pages,
San Diego, CA, March 15–19, 2010.

[9] D. Halperin, T. Anderson, and D. Wetherall, “Taking the sting out of car-
rier sense: Interference cancellation for wireless LANs,” in Proc. ACM
MobiCom, pp. 339–350, San Francisco, CA, Sept. 14–19, 2008.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness, W.H. Freeman and Company, New
York, NY, 1979.

[11] IBM ILOG CPLEX Optimizer, http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

[12] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, Linear Programming and
Network Flows, 4th edition, New York, NY, John Wiley & Sons Inc.,
2010.

[13] S. Lv, X. Wang, and X. Zhou, “Scheduling under SINR model in ad
hoc networks with successive interference cancellation,” in Proc. IEEE
GLOBECOM, 5 pages, Miami, FL, Dec. 6–10, 2010.

[14] S. Weber, J.G. Andrews, X. Yang, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with successive interference can-
cellation,” IEEE Trans. on Information Theory, vol. 53, no. 8, pp. 2799–
2814, Aug. 2007.

[15] M.T. Thai and P. Pardalos, “The Handbook of Optimization in Complex
Networks: Theory and Applications,” Springer Publisher, 2011.

[16] C. Jiang, Y. Shi, Y.T. Hou, S. Kompella, S.F. Midkiff, “Squeezing
the most out of interference: An optimization framework for joint
interference exploitation and avoidance,” in Proc. IEEE INFOCOM,
pp. 424–432, Orlando, FL, March 25–30, 2012.

1134

