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Abstract. A theoretical approach of acquiring arrival angles of signals sensed 
by sensor nodes in linear wireless sensor networks is introduced. The arrival 
angles of signals can be obtained by the estimation of signal covariance matric-
es. In this article, firstly, the existence of the solution to the estimation problem 
is studied intensively. Later on, the solution to this problem of estimating  
real-valued covariance matrices is discussed by the approach of maximum-
likelihood estimation. Finally, this approach is expanded to the realm of  
complex-valued covariance matrices. 
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1 Introduction 

Wireless sensor networks (WSNs) consisted of huge amount of sensor nodes and base 
station(s) are capable of performing numerous unmanned tasks in extreme environ-
ments, such as volcano areas, toxic areas, underwater and underground etc. WSNs 
play a very important role in many aspects of our modern society. For instance, with 
the aid of wireless sensor network, we can make our weather forecast more precise. In 
situations involving emergency services, such as poisonous gas leaks, wireless sensor 
networks will reduce our costs on locating and rescuing persons in danger.  

Linear wireless sensor networks (LWSNs) are a special family of wireless sensor 
networks with regard to linear network topology. Compared with normal wireless 
sensor networks, LWSNs exhibit lower complexity. Even though simple in topology, 
LWSNs possess numerous practical applications, such as monitoring public transpor-
tations, oil pipes, factories and plants. Nowadays, intensive researches in the field of 
WSNs focus on Network protocols, such as routing protocols, MAC protocols and 
cross-layer protocols, etc., which aim to alleviate the energy overhead of sensor nodes 
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and meet the real-time requirements in data transmission[1-6]. However, this article 
will primarily introduce a theoretical study of the estimation of signal covariance 
matrix in linear sensor networks which will be helpful in dealing with determining the 
direction of events popping up in the inspecting field of a LWSN.  

The remainder of this article is organized as follows: in section 2, the covariance 
matrix estimation problem will be briefly introduced as well as the mathematical 
modeling of the signal covariance matrix of LWSNs. What is more, the underlying 
relationship between the direction determination problem and the estimation of signal 
covariance matrix is also revealed given this model. Section 3 will look into the exis-
tence of solutions to the estimation problems referring to the maximum-likelihood 
estimation. In section 4, the attention will be paid to how to obtain such a solution to 
the estimation problem. Additionally, the result of the estimation problem with re-
spect to real-valued covariance matrices will be broaden into the realm of complex-
valued covariance matrices which have a close relationship to orientation problems in 
LWSNs. Section 5 will conclude this article. 

2 Brief Introduction to the Estimation of Covariance Matrix 

In the area of statistics, the estimation of a covariance matrix[7-10] is to approximate-
ly determine the unknown covariance matrix C of an M-dimension multivariate ran-
dom variable R given a series of xଵ, xଶ, … , xN . Each x୧ is an M-dimension vector 
drawn from the multivariate distribution of which the probability density function 

is pሺx୧ሻ. And the covariance matrix C in calculated by Eሾ൫R െ EሺRሻ൯൫R െ EሺRሻ൯Hሿ, 
where Eሺሻis an expectation, and ሺሻH denotes the conjugate transpose of a matrix. 

Assume that N events of interest burst out in the deploying area of the LWSN, and 
are sensed by M sensor node. Recall that these sensors are arranged in a linear fashion 
as shown in fig.1. 

Suppose that the signals are narrow-banded with certain known frequency f in ad-
vance, and the sensors are equally spaced with respect to each other. It  is also as-
sumed that these signals propagate over the distance long enough to make sure that 
the N received signals by all M sensors are parallel to each other as shown in fig.2. 

 

Fig. 1. Wireless Sensor Networks deployed in a linear fashion 
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Fig. 2. N events of interest sensed by M sensor nodes 

The N signals can be expressed by a M-by-N array manifold matrix G of the form 

G ൌ ێێۏ
ۍێ 1exp ሺെ j2πdλ sinθଵሻ…exp ሺെ jሺM െ 1ሻ2πdλ sinθଵሻ

1exp ሺെ j2πdλ sinθଶሻ…exp ሺെ jሺM െ 1ሻ2πdλ sinθଶሻ
… 1……… exp ሺെ j2πdλ sinθNሻ…exp ሺെ jሺM െ 1ሻ2πdλ sinθNሻۑۑے

ېۑ
MൈN

 

where λ denotes the wavelength of the signal, d denotes the distance between two 
sensor nodes, and θ୧ denotes the arrival angle of the ith event with respect to the line of 
sensor nodes. If the received signals are interfered by some additive noise with zero 
mean and σ୬ଶ variance Gaussian distribution which is uncorrelated with signals, the 
covariance matrix C of the received signals is of the form: C ൌ CN  GPGH                                                                    (1) 

where CN denotes the covariance matrix of M-dimension additive noise with zero 
mean and σ୬ଶ variance Gaussian distribution, P denotes the correlation matrix between 
signals. Furthermore, it the N signals are also independent to each other, (1) can be 
cast as 

C ൌ  σ୬ଶIM  ሾgଵ gଶ     … gNሿ  σଵଶ0. .0    0 σଶଶ…0    ………   00… σNଶ  ሾgଵ gଶ     … gNሿH ൌ  σ୬ଶIM ∑  σ୧ଶg୧g୧HN୧ୀଵ                                                         (2) 

where  g୧ ൌ ቂ1 exp ሺെ ୨ଶୢ sinθଵሻ … exp ሺെ ୨ሺMିଵሻଶୢ sinθNሻቃT
,  σ୬ଶ is the noise 

power,  σ୧ଶ is the ith signal power. 
Till now, it is clear that the covariance matrix C can be parameterized by σ୬ଶ ,  ሼσ୧ଶሽ, 

and ሼθ୧ሽ, i.e.,  C ൌ Cሺσ୬ଶ,  ሼσ୧ଶሽ, ሼθ୧ሽሻ                       (3) 
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From (3), it is obvious that the covariance matrix conveys knowledge about the arriv-
al angle θ୧ of the ith signal in that C is a function of ሼθ୧ሽ which will help us determine 
the direction of this signal. In the following sections, our discussion is mainly focused 
on how to estimating covariance matrices with certain special structure which is also 
possessed by C. 

3 Estimation of Real-Valued Covariance Matrices with Certain 
Structure 

The covariance matrix C  is a complex valued toeplitz (please refer to the appendix 
for detailed information) matrix as is shown in (2). What is more, C is also a hermitian 
matrix since C is equal to CH. However, even if C is such a structured matrix, it is 
still not easy to estimate C in that C is complex valued. Therefore, we first introduce 
the method which can be used to estimate some structured real valued matrices, and 
then the result will be extended to the realm of complex valued matrices.   

3.1 Estimating the Covariance Matrices through Maximum-Likelihood 
Method 

Suppose that the N real valued samples xଵ, xଶ, … , xN are drawn from an M-dimension 
Gaussian distribution with zero mean and covariance matrix C. Therefore, the proba-
bility density function for each x୧ is pሺx୧ሻ ൌ ሺ2πሻିMమ detሺܥሻିభమ ݔ݁ ቀെ ௫షభ௫ଶ ቁ                                      (4) 

If all these samples are independent to each other, the joint probability density func-
tion of these N samples is pሺxଵ, xଶ, … , xNሻ ൌ ሺ2πሻିMNమ det ሺCሻିNమ exp ሺെ ∑ ୶TCషభ୶ଶN୧ୀଵ ሻ         (5) 

In (4) and (5), the covariance matrix C is unknown and to be estimated, however, we 
presume that C is with certain structure. 

The log-likelihood function of C is 

ln൫LሺC; ሼx୧ሽሻ൯ ൌ ln൫pሺxଵ, xଶ, … , xNሻ൯ ൌ െ MN2 ln2π െ N2 lndetሺCሻ െ 12  x୧TCିଵx୧N
୧ୀଵ   

ൌ MN2 ln2π െ N2 lndetሺCሻ െ 12 tr ൭Cିଵ  x୧x୧TN
୧ୀଵ ൱                            ሺ6ሻ 

The proof of the second equation can be found in Appendix. 
Instead of maximizing the log-likelihood function stated in (6), it is equivalent to 

maximize the function 
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LᇱሺC; ሼx୧ሽሻ ൌ െ lndetሺCሻ െ tr ቀCିଵ ଵN ∑ x୧x୧TN୧ୀଵ ቁ                                 (7) 

Our estimator of C is C ൌ argmaxሺLԢሺC; ሼx୧ሽሻሻ. 

3.2 The Existence of the Solution to the Maximum-Likelihood Problem  
of Certain Structured Covariance Matrices 

In previous section, we have pointed out the estimation problem we are about to 
solve. In this section, a further study on the existence of solutions to this estimation 
problem will be carried out before discussing how to obtain such solutions. The real 
valued nonnegative-definite symmetric matrices will be taken into consideration be-
cause the observed samples will form such structured matrices. 

Let S ൌ ଵN ∑ x୧x୧TN୧ୀଵ , and substitute S into (7), we have LᇱሺC; Sሻ ൌ െ lndetሺCሻ െ trሺCିଵSሻ                    (8) 

Obviously, S is a nonnegative definite symmetric matrix, and our estimation problem 
can be formulated as a optimization problem 

Maximize: LᇱሺC; Sሻ ൌ െ lndetሺCሻ െ trሺCିଵSሻ 

Subject to: C belongs to the set of nonnegative definite matrices 

Before discussing the optimization problem, it is presumed that S is a positive definite 
matrix for every sample x୧ we acquire only possesses zero valued entries if S is non-
negative definite but not positive definite, which will make the problem extremely 
difficult to deal with. 

To prove the existence of solutions, we first look into the value of the objective 
function. We can prove that the objective function has an upper bound, and 
when detሺCሻ goes to zero, the value of the function tends to be minus infinity. To 
prove this, we need a lemma first. 

Lemma 1: if A and B are two positive definite symmetric matrices, there exists one 
unitary matrix U which will shoe these two matrices into diagonal matrices simulta-
neously through congruent transformation. (The proof of this lemma can be found in 
Appendix) 

Theorem 1: the value of the objective function in above optimization problem has an 
upper bound, and tends to be minus infinity while detሺCሻ goes to zero. 

Proof: Firstly, suppose that C is positive definite, which means that det ሺCሻ is greater 
than zero. Because C and S are both real valued positive definite symmetric matrices, 
we know from Schur Theorem that there exists unitary matrices Uଵ and Uଶ which will 
make C and S congruent to two diagonal matrices. Moreover, from lemma 1, there will 
be one unitary matrix U which could shape C and S congruent to diagonal matrices 
simultaneously, i.e., 
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UTCU ൌ ΛC ൌ cଵ ڮ ڭ0 ڰ 0ڭ ڮ cM൩, and UTSU ൌ ΛS ൌ sଵ ڮ ڭ0 ڰ 0ڭ ڮ sM൩ 

Therefore, trሺCିଵSሻ can be rewritten as trሺCିଵSሻ ൌ trሺUሺUTCUሻିଵUTSUUTሻ ൌ trሺUΛCିଵΛSUTሻ ൌ trሺΛSΛCିଵሻ ൌ ∑ ୱM୧ୀଵ   (9) 

For arbitrary positive number a, detሺCሻ ൌ a, we can calculate the minimum value of  trሺCିଵSሻ via Lagrange Multiplier. If trሺCିଵSሻ has a minimum value, then it means 
the value of (8) has an upper bound. The optimization problem here is  

Minimize: trሺCିଵSሻ 

Subject to:  detሺCሻ ൌ ∏ c୧M୧ୀଵ ൌ a 

The Lagrange function is   Fሺሼc୧ሽ, λሻ ൌ trሺCିଵSሻ  λሾdetሺCሻ െ aሿ                (10) 

when ൞c୧ ൌ ୱ           λ ൌ ୢୣ୲ ሺSሻ భM భM ଵ ,  trሺCିଵSሻ  will achieve its minimum value  ୢୣ୲ ሺSሻ భMୢୣ୲ ሺCሻ భM M , and 
LᇱሺC; Sሻ  െ lndetሺCሻ െ ୢୣ୲ ሺSሻ భMୢୣ୲ ሺCሻ భM M, which means that LᇱሺC; Sሻ has an upper bound 

when C is positive definite.  
If C is singular, i.e.,  detሺCሻ ൌ 0, the value of LᇱሺC; Sሻ ൌ െlndetሺCሻ െ trሺCିଵSሻ 

tends to be minus infinity, which means pሺxଵ, xଶ, … , xNሻ tends to be zero, thus, trivial. 
Therefore, we proved that LᇱሺC; Sሻ has an upper bound when C is positive definite, 

and tends to be minus infinity when C is singular. 
Form this theorem, we know that for any nonnegative definite matrix C, the value 

of  LᇱሺC; Sሻ will be less or equal toെ lndetሺCሻ െ ୢୣ୲ ሺSሻ భMୢୣ୲ ሺCሻ భM M.  

In the following part of this section, we will prove that the solution to the maxi-
mum-likelihood problem does exist. However, before starting proving, one definition 
and one lemma need to be introduced. 

Definition: For a positive number  e , there is a set of 
es  Mୣ ൌ ൛M א RMൈMหหm୧୨ห  eൟ, where  M is a M×M matrix, and m୧୨ is the entry 
lying in the ith row and jth column of the matrix. 

Lemma 2: If a matrix A a real valued nonnegative definite symmetric matrix, a୫୬ is 
the largest element among all entries in  A with respect to magnitude, then we 
have trሺAሻ  | a୫୬ |. (The proof of this lemma can be found in Appendix.) 
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Now we start to prove the existence of the solution: 
The set of nonnegative definite symmetric matrices is denoted as MS. The intersec-

tion of Mୣ and MS is shown in fig.3. It is clear that MS is closed, and the boundary 
of MS is the set of singular nonnegative definite symmetric matrices. The boundary 
of Mୣ ת  MS contains two parts: one is the set of singular nonnegative definite symme-
tric matrices (drawn in solid line), and the other is the set of positive definite symme-
tric matrices with one element on the main diagonal equal to e (drawn in the dash 
line). Moreover, from theorem 1, it is clear that the finite values of LᇱሺC; Sሻ can only 
be obtained in the interior of MS. 

 

Fig. 3. The intersection of  MS and Me. The area 1 denotes the set of MS. The area 2 denotes the 
set of Me, and the area 3 denotes the intersection of them. 

To prove the existence of such a solution, we want to prove that for a large enough 
positive number e, the solution lies in the intersection of MS and Mୣ. It is proved by 
contradiction. If such an e does not exist, it means for any e, there will always be 
an eᇱ larger than e, and the optimal value of LᇱሺC; Sሻ in MS ת Mୣᇱ will be greater than 
that inMS ת Mୣ. Intuitively, the value of  LᇱሺC; Sሻ will be maximized when e goes to 
positive infinity. From lemma 1, we know there is a unitary matrix U which will trans-
form C and S into diagonal matrices ΛC and ΛC simultaneously. Without losing gene-
rality, assume that  c୩ and  s୪ are the largest and smallest diagonal elements 
in ΛC and ΛC respectively. Form (9), LᇱሺC; Sሻ can be cast as 

LᇱሺC; Sሻ ൌ െ ሺlnc୧  s୧ܿሻM
୧ୀଵ ൌ െ ൬lnc୩  s୩ܿ൰ െ  ሺlnc୧  s୧ܿሻM

୧ୀଵ,୧ஷ୩ െ ൬lnc୩  s୪ܿ൰ െ  ሺlnc୧  s୧ܿሻM
୧ୀଵ,୧ஷ୩  

(11) 
The inequality holds for c୩ and s୪ are the largest and smallest diagonal elements 
in ΛC and ΛC respectively. From lemma 2, if the largest element in C is c୫୬ which is 
equal to e, it is obvious that Mc୩  trሺCሻ  c୫୬ ൌ e                        (12) 
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Therefore, c୩  Mୣ, which indicates that when e goes to positive infinity, c୩ will also 

go to positive infinity. What is more, when c୩ tends to positive infinity, the value of LᇱሺC; Sሻ will be minus infinity. Hence, it contradicts the hypothesis that when e goes 
to positive infinity, LᇱሺC; Sሻ will be maximized. So, the solution to the estimation 
problem must exist and can be found in the intersection of MS and Mୣ with certain 
large e. 

4 The Method of Solving the Estimation Problem 

In this section, the method of solving the estimation problem is acquired through total 
differential of a function. Recall the objective function is LᇱሺC; Sሻ ൌ െ lndetሺCሻ െ trሺCିଵSሻ 

when this function achieves its maximum, the total differential of this function will be 
zero. 

Note that the objective function is the function with matrix parameter. The total 
differential of a FሺMሻ, where M is a matrix parameterized by mଵ, mଶ, … , m୩, is  d൫FሺMሻ൯ ൌ ∑ பሺFሺMሻሻப୫୩୧ୀଵ dm୧                   (13) 

For example, if FሺMሻ ൌ M, and M is parameterized by all its elements, then the total 
differential of FሺMሻ is 

dFሺMሻ ൌ 1 ڮ ڭ0 ڰ 0ڭ ڮ 0൩ dmଵଵ  ڮ  0 ڮ ڭ0 ڰ 0ڭ ڮ 1൩ dmNN ൌ dmଵଵ ڮ dmଵNڭ ڰ dmNଵڭ ڮ dmNN൩ 

The total differential of the first part of (8) is dሺdetሺCሻሻ ൌ ∑ ப ∑ ୡౠCౠכMౠసభபୡౠM୧ୀଵ dc୧୨ ൌ trሺCିଵdCሻ            (14) 

where the C୧୨כ  denotes the adjoint matrix of c୧୨. 
The total differential of the second part of (8) is d൫trሺCିଵSሻ൯ ൌ െtrሺCିଵdCCିଵSሻ               (15) 

Therefore, the total differential of (8) is d൫LᇱሺC; Sሻ൯ ൌ trሺCିଵdCCିଵS െ CିଵdCሻ ൌ trሾሺCିଵSCିଵ െ CିଵሻdCሿ     (16) 

For any feasible direction of variation of C, the total differential must be zero, 
i.e., trሾሺCିଵSCିଵ െ CିଵሻdCሿ must be zero. Especially, when dC meets the structure 
requirements of C, and since (16) is always zero for arbitrary direction of variation 
of C, we can substitute dC by C, which leads to trሺCିଵSሻ ൌ M                           (17) 
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From this, it is clear that if there are no further constraints on C, the best estimator 
of C is S itself.  

Till now, only the real valued covariance matrices estimation is taken into consid-
eration. However, from the form of array manifold matrix, we know that the matrices 
of interest are complex valued matrices. Nevertheless, we can alter the estimation 
problem of complex valued matrices to the estimation of real valued matrices via 
reconstructing S.   

Recall that in the real valued scenario, S ൌ ଵN ∑ x୧x୧TN୧ୀଵ . Similarly, when the ele-

ments of  x୧ are complex valued, S ൌ ଵN ∑ x୧x୧HN୧ୀଵ . We can 

struct SR ൌ ଵN ∑ Reሺx୧ሻImሺx୧ሻ൨ ሾReሺx୧ሻT Imሺx୧ሻTሿN୧ୀଵ  which is obviously real valued, and 

positive definite symmetric as well. We can use the real valued and positive definite 
symmetric matrix SR to estimate CR. 

Let O ൌ ଵN ∑ Reሺx୧ሻReሺx୧ሻTN୧ୀଵ ,  P ൌ ଵN ∑ Imሺx୧ሻImሺx୧ሻTN୧ୀଵ , and Q ൌ ଵN ∑ Reሺx୧ሻImሺx୧ሻTN୧ୀଵ , thus, SR ൌ  O QQT P൨. The estimation of C is acquired by 

averaging the outer product of N sensed data. What is more, the relationship between CR and C is one-to-one mapping, i.e., c୧୨ ൌ o୧୨  p୧୨ െ jq୧୨  jq୨୧. 
Therefore, we can acquire the estimation of a complex valued matrix via estima-

tion of a corresponding real values matrix. It is shown in the following example that 
how to acquire the arrival angels. 

Suppose there are N events of interest and M sensor in the field. xଵ, xଶ, … , xN are 
N samples we acquired, and each sample x୧is a M-dimension vector with each ele-
ment equal to the signal of the ith event acquired by a sensor. Each vector is complex 

valued. The matrix S ൌ ଵN ∑ x୧x୧HN୧ୀଵ  is used to estimate the covariance matrix C.  

From above discussion the estimator of C can be obtained from the estimation of a 

real valued matrix SR ൌ  O QQT P൨ via Maximum-likelihood approach. Denote CԢ as 

the estimator of C. From section 2, the covariance matrix has the form of (1). Suppose 
that the received signals are interfered by some additive noise with zero mean 
and σ୬ଶ variance Gaussian distribution, and the ith power of received signals is σ୧ଶ. We 
can acquire the array manifold matrix G through the following equation: CԢ ൌ  σ୬ଶIM  ∑  σ୧ଶg୧g୧HN୧ୀଵ                       (19) 

Every  g୧ is with the form ቂ1 exp ሺെ ୨ଶୢ sinθଵሻ … exp ሺെ ୨ሺMିଵሻଶୢ sinθNሻቃ , 

which means the each arrival angle θ୧ is now available to us.  

5 Conclusion 

In this article, intensive study has been made in order to estimate the angles of arrival 
of signals sensed by sensor nodes in linear wireless sensor networks. In dealing with 
this problem, we use signal covariance matrix estimation techniques after the  
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discussion of the relationship between arrival angles and signal covariance matrices. 
The maximum-likelihood estimation approach is adopted to solve the estimation 
problem. In future researches, the relationship between arrival angles and covariance 
matrices needs to be further studied, which will reveal a much more explicit insight 
into the relationship between these subjects. Studies of other methods, such as para-
meter estimation, which will give us a direct way to acquire the arrival angles, and 
minimum entropy estimation, will also be carried out successively.  
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Appendix 

Toeplitz Matrix 

A matrix T is a toeplitz matrix if arbitrary element  t୧୨ in T is equal to t୧ି୨, i.e.,  T ൌ  t … tଵିMtଵ … tଶିM…tMିଵ …… …t  

 ∑ x୧TN୧ୀଵ Cିଵx୧ ൌ ∑ trሺx୧TCିଵx୧ሻN୧ୀଵ ൌ ∑ trሺCିଵx୧x୧TሻN୧ୀଵ ൌ  ∑ Cିଵtrሺx୧x୧TሻN୧ୀଵ  

Lemma 1 

Proof: if A and B are positive definite symmetric, the matrix A+B is also positive 
definite symmetric. It is obvious that a positive definite symmetric matrix is congru-
ent to identity matrix I. Therefore, A+B is congruent to I, and the congruence matrix 
is U1, i.e., UଵTሺA  BሻUଵ ൌ I. It is clear that the matrix UଵTAUଵ is positive definite 
symmetric as well, hence, there exists one unitary matrix Uଶ which will 
change UଵTAUଵinto a diagonal matrix ΛA, i.e.,  UଶT UଵTAUଵUଶ ൌ  ΛA. Hence,   UଶT UଵTሺA  BሻUଵUଶ ൌ ΛA   UଶT UଵTBUଵUଶ ൌ I. 
Therefore, UଶT UଵTBUଵUଶ ൌ I െ  UଶT UଵTAUଵUଶ, which means that UଶT UଵTBUଵUଶ is also 
a diagonal matrix. So, there exists one unitary matrix UଵUଶ which can shape A and B 
into diagonal matrix simultaneously. 

Lemma 2 

Proof: if a୫୬ is positive, we construct a vector with mth and nth entries equal to 1  
and -1. Then we have xTAx ൌ a୫୫  a୬୬ െ a୫୬ െ a୬୫ ൌ a୫୫  a୬୬ െ 2a୫୬  0 

Because A is nonnegative definite, it elements on the main diagonal are all greater 
than or equal to zero. Therefore, we have trሺAሻ  2a୫୬  a୫୬. 

If a୫୬ is negative, we construct a vector with mth and nth entries both equal to 1. 
Then we have xTAx ൌ a୫୫  a୬୬  a୫୬  a୬୫ ൌ a୫୫  a୬୬  2a୫୬  0 

Therefore, we have trሺAሻ  െ2a୫୬  െa୫୬ ൌ |a୫୬|. 
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