
Multi-job Associated Task Scheduling
Based on Task Duplication and Insertion

for Cloud Computing

Yuqi Fan(B), Lunfei Wang, Jie Chen, Zhifeng Jin, Lei Shi, and Juan Xu

School of Computer Science and Information Engineering,
Anhui Province Key Laboratory of Industry Safety and Emergency Technology,

Hefei University of Technology, Hefei 230601, Anhui, China
{yuqi.fan,2019170960,shilei,xujuan}@hfut.edu.cn,

{cxwlf,jie.chen}@mail.hfut.edu.cn

Abstract. The jobs processed in cloud computing systems may consist
of multiple associated tasks which need to be executed under order-
ing constraints. The tasks of each job are run on different nodes, and
communication is required to transfer data between nodes. The process-
ing and communication capacities of different components have great
heterogeneity. For multiple jobs, simple task scheduling policies cannot
fully utilize cloud resources and hence may degrade the performance of
job processing. Therefore, careful multi-job task scheduling is critical to
achieve efficient job processing. The performance of existing research on
associated task scheduling for multiple jobs needs to be improved. In
this paper, we tackle the problem of associated task scheduling of mul-
tiple jobs with the aim to minimize jobs’ makespan. We propose a task
Duplication and Insertion based List Scheduling algorithm (DILS) which
incorporates dynamic finish time prediction, task replication, and task
insertion. The algorithm dynamically schedules the tasks based on the
finish time of scheduled tasks, replicates some of the tasks on different
nodes, and inserts the tasks into idle time slots to expedite successive task
execution. We finally conduct experiments through simulations. Experi-
mental results demonstrate that the proposed algorithm can effectively
reduce the jobs’ makespan.

Keywords: Task scheduling · Associated tasks · Job priority ·
Makespan

1 Introduction

Cloud computing is an increasingly essential platform for various applications,
since cloud computing can achieve scalability and economy of scale. In order

This work was partly supported by the National Key Research Development Plan of
China under Grant 2018YFB2000505 and the Key Research and Development Project
in Anhui Province under Grant 201904a06020024.

c© Springer Nature Switzerland AG 2020
D. Yu et al. (Eds.): WASA 2020, LNCS 12384, pp. 109–120, 2020.
https://doi.org/10.1007/978-3-030-59016-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59016-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-59016-1_10

110 Y. Fan et al.

to enable on-demand resource provisioning and allocation, cloud platform is
built on various hardware, i.e. computing and network components, which show
great heterogeneity. Users submit jobs to the cloud platform for execution. Each
job processed by the cloud is split into multiple tasks which are assigned to
multiple servers to execute in a parallel and distributed manner, and hence
communication is required to transfer the data between the servers so that the
tasks can get the required input data.

The tasks of a job may need to be executed under ordering constraints, and
the associated tasks of a job are represented by a directed acyclic graph (DAG),
where each node is a task and each directed arc is the ordering constraint between
two consecutive tasks [1,2]. The DAG-based jobs are widely found in some real
applications such as DNA detection in genetic engineering, image recognition,
climate prediction, geological exploration, etc. [3].

Extensive research has been conducted on associated task scheduling. A
heuristic algorithm based on genetic algorithms and task duplication was pro-
posed in [4]. A task duplication based scheduling algorithm was introduced
in [5]. A heterogeneous scheduling algorithm with improved task priority (HISP)
which calculates task priority based on standard deviation with improved magni-
tude as computation weight and communication weight was proposed; the algo-
rithm adopts an entry task duplication selection policy and an idle time slots
insertion-based optimizing policy [6]. A list-based scheduling algorithm called
Predict Earliest Finish Time (PEFT) was proposed to introduce an optimistic
cost table (OCT), which was used for task ranking and processor selection [7].
The joint problem of task assignment and scheduling considering multidimen-
sional task diversity was modeled as a reverse auction with task owners being
auctioneers; four auction schemes were designed to satisfy different application
requirements [8,9]. A solution was proposed to detect and remove both short-
term and long-term traffic redundancy through a two-layer redundancy elimi-
nation design [10]. A stochastic load balancing scheme was designed to provide
probabilistic guarantee against the resource overloading with virtual machine
migration, while minimizing the total migration overhead [11]. An algorithm
was proposed to schedule tasks by calculating the priority of each task; the algo-
rithm first processes the tasks with higher priority to meet the deadline [12]. A
Heterogeneous Earliest-Finish-Time (HEFT) algorithm was proposed to select
the task with the highest upward rank value at each step and assign the selected
task to the processor, which minimizes earliest finish time of the task with an
insertion-based approach [13]. A task scheduling mechanism based on two levels
of load balance was proposed to meet the dynamic task requirements of users and
improve the utilization of resources [14]. A performance effective task scheduling
(PETS) algorithm was proposed to calculate the priority of each task based on
task communication cost and average computation cost and select the processor
with the minimum earliest finish time for each task [15].

During the execution of each job, there may be some idle time slots on the
processors. For multiple jobs, simple task scheduling policies cannot fully utilize
the idle resources, such that the performance of job processing may be degraded.

Multi-job Associated Task Scheduling 111

Therefore, careful multi-job task scheduling is critical for achieving high perfor-
mance of cloud computing systems. The performance of existing research on asso-
ciated task scheduling for multiple jobs needs to be improved. In this paper, we
deal with the multi-priority associated task scheduling problem with the objective
of minimizing the jobs’ makespan, when the underlying computing and communi-
cation components of the cloud computing platform have great diversity.

The main contributions of this paper are as follows. We formulate the prob-
lem of prioritized associated task scheduling with the aim to minimize the jobs’
makespan. We then propose a task Duplication and Insertion based List Schedul-
ing (DILS) algorithm which incorporates dynamic finish time prediction, task
replication, and task insertion. The algorithm dynamically predicts the remain-
ing execution time for each task according to the scheduling of previously sched-
uled tasks, replicates some of the tasks on different nodes, and inserts the tasks
into idle time slots to expedite task execution. We also conduct experiments
through simulations. Experimental results demonstrate that the proposed algo-
rithm can effectively reduce the jobs’ makespan.

The rest of the paper is organized as follows. The problem is defined in Sect. 2.
We present the proposed algorithm in Sect. 3. The performance evaluation of the
proposed algorithm is given in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Prioritized Associated Task Scheduling Model

Assume the finite set of jobs with different priorities to be processed is J =
{J1, ..., Jk,}, where Jk is the k-th DAG-based job consisting of multiple asso-
ciated tasks. Job Jk is represented by a tuple Jk =< Tk, Ek >, where Tk is the
task set of job Jk and Ek is the directed arc set {ek

i,j |tki , tkj ∈ Tk}. Each arc
ek
i,j ∈ Ek signifies the ordering constraint of task tki and task tkj , where tki and tkj

are the i-th task and the j-th task of job Jk, respectively. To be specific, arc ek
i,j

signifies that task tkj cannot be executed until the execution of task tki is com-
pleted, i.e. task tkj is the successive task of task tki and task tki is the preceding
task of task tkj . Arc ek

i,j also indicates that task tkj requires the data generated
by task tki , and the data need to be transmitted to the server executing task
tj . The weight c(tki , tkj) of arc ek

i,j is the time for data transmission from the
server running task tki to the server executing task tkj . When the two tasks are
scheduled on the same server, c(tki , tkj) = 0; that is, the communication within a
single server is negligible.

A DAG-based job example is shown in Fig. 1. In the DAG, task set Tk =
{tk1 , ..., t

k
i , ..., tk10} consists of 10 tasks. The directed arc from node tk2 to node tk8

indicates task tk2 is the preceding task of task tk8 , and the weight of the directed
arc specifies that the communication time from task tk2 to task tk8 is 3, if the two
tasks are assigned on different servers.

The execution time of a task may be different on different servers due to
the diversity of servers’ computing capacities. Assuming P = {p1, ..., ps...} is
the set of servers which will run the jobs, we use an execution time matrix

112 Y. Fan et al.

Fig. 1. DAG-based job example.

Table 1. Execution time matrix
example

p1 p2 p3

tk1 22 21 36

tk2 22 18 18

tk3 32 27 43

tk4 7 10 4

tk5 29 27 35

tk6 26 17 24

tk7 14 25 30

tk8 29 23 36

tk9 15 21 8

tk10 13 16 33

Wk = Tk ×P to list all the possible mapping between task tki and server ps. Each
element w(tki , ps) in matrix Wk is the execution time of server ps running task
tki . An execution time matrix example for the DAG shown in Fig. 1 is described
in Table 1. Assuming the server set P = {p1, p2, p3} consists of 3 servers, the
element of mapping task tk2 and server p2 indicates that the execution time of
task tk2 on server p2 is 18.

Definition 1. In DAG-based job Jk, ingress task tkin is the task without any
preceding tasks, and egress task tkout is the task without any successive tasks.

For the DAG-based job shown in Fig. 1, the ingress task and egress task are
tasks tk1 and tk10, respectively. If a job includes more than one ingress task, we
add a virtual task node with zero computation cost as the virtual ingress task,
and add a directed arc from the virtual ingress task to each of the original ingress
task nodes with zero weight.

Definition 2. EST (tki , ps), the earliest start time (EST) that task tki can be
executed on server ps, is defined via Eq. (1), where EAT (ps) is the earliest time
that server ps is available, pre(tki) is the set of the preceding tasks of task tki , and
AFT (tkj) is the actual finish time of task tkj .

EST (tki , ps) = max{ EAT (ps),maxtkj ∈pre(tki)
{AFT (tkj)

+c(tkj , tki)}},∀tki ∈ Tk,∀ps ∈ P.
(1)

Definition 3. EFT (tki , ps), the earliest finish time (EFT) that server ps can
complete the execution of task tki , is calculated via Eq. (2).

EFT (tki , ps) = EST (tki , ps) + w(tki , ps),∀tki ∈ T,∀ps ∈ P. (2)

Multi-job Associated Task Scheduling 113

Definition 4. For job set J in which the jobs have different priorities, the
makespan of job set J , Γ(J), is the completion time of all the jobs and can
be calculated via Eq. (3).

Γ(J) = max
Jk∈J

AFT (tkout). (3)

Given job set J , the DAG of each job, server set P , and the execution time
of each job on each server, we need to schedule the jobs in J on the servers in
P , so as to minimize Γ(J), i.e. the makespan of job set J .

3 Multi-job Task Scheduling Algorithm

It is known that the single-job associated task scheduling problem with the aim
to minimize the makespan is an NP -hard problem. Obviously, the multi-job
associated task scheduling problem is also NP -hard [16].

In this section, we propose a task Duplication and Insertion based List
Scheduling (DILS) algorithm which incorporates dynamic finish time predic-
tion, task replication, and task insertion. The algorithm dynamically predicts
the remaining execution time for each task according to the scheduling of pre-
viously scheduled tasks. The algorithm then schedules the task with the latest
remaining time on the server which can minimize the remaining time. After each
task is scheduled, the algorithm adopts task duplication and task insertion to
advance the start time of this task. The remaining execution time of each to-
be-scheduled task is updated upon the scheduling of a task. Algorithm DILS
shown in Algorithm 1 consists of five components: task remaining time calcula-
tion, selection of the task to be scheduled, server allocation for the task to be
scheduled, task duplication, and task insertion.

Algorithm 1. Algorithm DILS
Input: Server set P , job set J with each job’s DAG, and execution time matrices
Output: Makespan of the jobs
1: for each job Jk ∈ J do
2: Calculate the predicted remaining time of each task via Eq. (6) and create the

Prediction of Remaining Time (PRT) table;
3: Create an empty ready task list and add the ingress task to the list;
4: while ready task list is not empty do
5: for each task tki in ready task list do
6: Compute the average path length of task ti via Eq. (8);
7: end for
8: Select the task with the maximum average path length with Eq. (9);
9: Assign the server leading to the minimum estimated path length via Eq. (10)

to the task;
10: Task duplication and task insertion;
11: Update the ready task list;
12: end while
13: end for
14: return the completion time of the last scheduled task.

114 Y. Fan et al.

3.1 Task Remaining Time Calculation

Each task is assigned a weight which is the total computation and communication
time of all the subsequent tasks. The weights of all the tasks are maintained in a
Predicted Remaining Time (PRT) table, and each element PRT (tki , ps) in table
PRT is the predicted remaining time required for executing all the subsequent
tasks of task tki (1 ≤ i ≤ N), if it is allocated to server ps ∈ P . The weight of
task tki is closely related to its successive tasks and the number of servers, and
we let

Ak
i,s = maxtkj ∈suc(tki)

{minpt∈p{ PRT (tkj , pt) + w(tkj , pt)
+c(tki , tkj)}},

(4)

where suc(tki) is the set of successive task of task tki , and let

Bk
i =

∑
tkj ∈suc(tki)

∑
pt∈P PRT (tkj ,pt)

M

M
. (5)

Note that the weight of the egress task of each job is 0, no matter which
server runs the egress task. That is, for any pt ∈ P , PRT (tkout, pt) = 0.

PRT (tki , ps) = max{Ak
i,s, B

k
i },∀tki ∈ T,∀ps ∈ P. (6)

The weight of task tki is calculated via Eq. 6. Starting from the egress task to
the ingress task in each DAG, algorithm DILS recursively calculates backwards
the weight of each task on each server, and obtains the PRT table.

3.2 Selection of the Task to Be Scheduled

We call task tki is ready, when all the preceding tasks of task tki are scheduled.
We create a ready task list (RTL) to maintain all the tasks which are ready.
Initially, only the ingress task of each DAG-based job is ready, and hence the
ready task list contains only one task, tkin. We calculate the EST of each task
which is in the ready task list. The EST of task tki on server ps, EST (tki , ps), is
calculated via Eq. (1). The estimated path length (EPL) when task tki is assigned
to server ps, EPL(tki , ps), can be calculated via Eq. (7).

EPL(tki , ps) = EST (tki , ps) + w(tki , ps)
+PRT (tki , ps),∀tki ∈ Tk,∀ps ∈ P.

(7)

Each task may be placed on each ps ∈ P . For task tki which is ready, APL(tki),
the average path length (APL) of task tki , is calculated with Eq. (8).

APL(tki) =

∑
ps∈P EPL(tki , ps)

M
,∀tki ∈ Tk. (8)

We select task tki which is ready and has the maximum average path length
as the task to be scheduled by considering the difference of the task execution
time on different paths; that is,

Multi-job Associated Task Scheduling 115

tki = argmaxtkj ∈RTL{APL(tkj)}. (9)

The selection is related to the task’s EST which dynamically changes with
the previous scheduling result. Therefore, the selection of to-be-scheduled task
is dynamically changed during the associated task scheduling process.

3.3 Allocation of the Server for the Task to Be Scheduled

We allocate to-be-scheduled task tki to server ps which leads to the minimum
estimated path length to reduce the makespan, i.e.

ps = argminpt∈P {EPL(tki , pt)}. (10)

If multiple servers achieve the same minimum estimated path length for task
tki , we randomly assign task tki to one of the servers. The actual start time of
task tki is calculated by Eq. (2). After the server allocation for the task to be
scheduled is completed, some other tasks may be ready to scheduled, and hence
we update the ready task list.

3.4 Task Duplication

Task duplication makes multiple copies of task tki and assigns the task copies on
different processors to reduce the data transmission time between tasks. In this
way, the direct successive tasks of task tki can be started right after the execution
of tki , without waiting for the data generated by task tki to be transmitted through
network. Task duplication works as follows.

(1) Assign each task tkj in pre(tki) a time weight τk
j which is the time when the

data generated by the preceding task of task tki are sent to processor ps

where task tki is to be executed.
(2) Sort all the preceding tasks in pre(tki) according to non-ascending order of

the time weights.
(3) Process each of the preceding tasks in pre(tki) iteratively. Schedule a copy of

task tkj ∈ pre(tki) in the earliest idle time slot (ITS) on processor ps, if the
following conditions are satisfied: (I) τk

j > EAT (ps), that is, τk
j is greater

than the earliest available time of processor ps; (II) there is an idle time slot
for the copy of tkj ; (III) task tki can start earlier by duplicating tkj .

3.5 Task Insertion

Task insertion inserts a task into an idle time slot on a processor which is occu-
pied by some tasks after the time slot. Task insertion works as follows.

1) When task tki is to be scheduled on processor ps, we search all idle time slots
on processor ps, and the idle time slot chosen to insert task tki meets the
following conditions: (I) EST (tki , ps), the earliest start time of task tki , is no
ealier than the start time of the idle time slot; (II) EFT (tki , ps), the earliest
finish time of task tki on processor ps, is no later than the end time of the
idle time slot;

116 Y. Fan et al.

2) When multiple idle time slots meet the conditions above, we select the ITS
with the smallest difference between the length of the ITS and the execution
time of task tki .

4 Simulation

In this section, we evaluate the performance of the proposed algorithm DILS
against two state-of-the-art algorithms PEFT [7] and HSIP [6]. We also investi-
gate the impact of important parameters on the performance of algorithm DILS.

The scheduling results of the three algorithms for job set Js = <J1, J2> are
illustrated in Fig. 2, where DAGs J1 and J2 are the same as the DAG shown in
Fig. 1 and Table 1. The gray shadowed block represents the task that algorithms
DILS and HSIP choose to replicate. We can see that algorithm DILS achieves
better results than algorithms HSIP and PEFT in this example.

Fig. 2. The example of scheduling result

4.1 Simulation Setup

In this paper, we evaluate the performance of the three algorithms in terms of
Schedule Length Ratio (SLR) which is the ratio of the scheduling length to the
minimum scheduling length by ignoring the communication time as defined via
Eq. (11).

SLR =

∑
Jk∈J makespan

∑
Jk∈J

∑
tki ∈CPMIN

minps∈P

{
w

(
tki , ps

)} (11)

where CPMIN is the minimum length of the critical path in the DAG-based job
after ignoring the communication time between tasks, and the critical path of a
DAG-based job is the longest path from its ingress task to its egress task.

Multi-job Associated Task Scheduling 117

(a) Gaussian Elimination. (b) Montage Workflow. (c) Molecular Dynamics.

Fig. 3. Real-world DAGs

We use both DAG-based jobs randomly generated by a DAG generator and
real-world DAG-based jobs in the simulations, where the parameters used by the
generator are consistent with those in [17,18]. The DAG topology parameters
are as follows:

(1) DAG average calculation time cDAG: indicating the average execution time
of the tasks in the DAG, which is randomly set during the simulation.

(2) Communication Calculation Ratio CCR: the ratio of the average commu-
nication time and the average execution time; the larger the value, the
more communication-intensive the DAG-based job; the smaller the value,
the more computation-intensive the DAG-based job.

(3) Heterogeneous parameter α: representing the task execution time range
on different processors; the larger the value, the more heterogeneous the
processors.

We select three classic DAG-based jobs from the real-world applications in
the simulations.

(1) Gaussian Elimination: it is used in linear algebraic programming for solving
linear equations as shown in Fig. 3(a). The number of nodes is N = β2+β−2

2
according to matrix parameter β.

(2) Montage Workflow: it is applied to construct astronomical image mosaic.
An example of Montage Workflow is shown in Fig. 3(b).

(3) Molecular Dynamics Code: it is an algorithm to implement the atomic and
the molecular physical motion. An example of Molecular Dynamics Code is
depicted in Fig. 3(c).

4.2 Performance of Algorithm DILS and Impact of Parameters

Figure 4 shows the makespan performance of the three algorithms by varying the
number of DAG-based jobs, when the number of processors is set as 4, the DAG-
based jobs are randomly generated by the generator, and the parameters CCR

118 Y. Fan et al.

and α are both set as 1. It can be seen that the makespan increases as the number
of DAG-based jobs increases. In general, algorithm DILS always achieves the best
performance among the three algorithms, and algorithm HSIP performs better
than algorithm PEFT. With 10 DAG-based jobs, the performance improvement
of algorithm DILS on algorithms HSIP and PEFT reaches up to 4.5% and 7.9%,
respectively.

Figure 5 depicts the average SLR performance with different number of DAG-
based jobs, when the number of processors is 8, the DAG-based jobs are randomly
generated by the generator, and the parameters CCR and α are both set as 1.
The average SLR generated by the three algorithms of DILS, HSIP and PEFT
decreases with the increase of the number of DAG-based jobs, since more idle
time slots are utilized. Algorithm DILS leads to the least average SLR among
the three algorithms since algorithm DILS can make the best use of idle time
slots. Algorithm DILS outperforms algorithms HSIP and PEFT from 16.3% to
17.6% and from 17.9% to 25.0%, respectively, when the number of DAG-based
jobs increases from 2 to 10.

Figure 6 illustrates the average SLR performance versus different matrix size
parameter β for the Gaussian Elimination jobs when the number of processors is
2. It can be observed that the average SLR of the three algorithms increases with
the increase of β. There are more tasks in the jobs with a larger β than that
with a smaller β, which requires more computation and communication time
to execute all the associated tasks. The performance improvement of algorithm
DILS on algorithms HSIP and PEFT is up to 11.9% and 12.1%, respectively.

2 4 6 8 10

Number of DAG-based jobs

0

2000

4000

6000

8000

10000

12000

14000

16000

M
ak

es
pa

n

DILS
HSIP
PEFT

Fig. 4. The makespan
with the different number
of DAG-based jobs

2 4 6 8 10

Number of DAG-based jobs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 S
LR

DILS
HSIP
PEFT

Fig. 5. The average SLR
with the different number
of DAG-based jobs

5 10 15 20

Matrix parameter

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 S
LR

DILS
HSIP
PEFT

Fig. 6. The average SLR
with the different matrix
parameter β

Table 2 describes the average SLR for Montage Workflow and Molecular
Dynamics Code. Parameter α varies in {01, 0.5, 1, 2}, when parameter CCR = 1
and the numbers of DAG-based jobs and processors are 5 and 4, respectively.
Parameter CCR increases from 0.2 to 10, when α = 1 and the number of DAG-
based jobs and processors is 5 and 8, respectively. The average SLR increases
with the increase of CCR, since the communication between tasks consumes
more time as parameter CCR increases. Algorithm DILS always achieves the
best performance in all the three algorithms.

Multi-job Associated Task Scheduling 119

Table 2. Average SLR with Montage Workflow and Molecular Dynamics Code

DAG type Algorithm Parameter α Parameter CCR

0.1 0.5 1 2 0.2 0.5 1 2 5 10

Montage Workflow DILS 1.00 1.04 1.12 1.15 0.53 0.58 0.61 0.62 0.67 0.93

HSIP 1.22 1.33 1.43 1.50 0.74 0.75 0.84 0.87 0.92 1.13

PEFT 1.25 1.36 1.38 1.48 0.73 0.75 0.83 0.84 0.98 1.22

Molecular Dynamics Code DILS 1.25 1.36 1.46 1.53 0.66 0.70 0.75 0.80 0.87 1.01

HSIP 1.31 1.45 1.56 1.67 0.73 0.79 0.87 1.03 1.21 1.33

PEFT 1.29 1.44 1.62 1.61 0.74 0.76 0.92 1.06 1.31 1.58

5 Conclusion

Careful multi-job task scheduling is critical to achieve efficient job processing. In
this paper, we studied the problem of associated task scheduling of multiple jobs
with the aim to minimize jobs’ makespan. We proposed a task Duplication and
Insertion based List Scheduling algorithm (DILS) which incorporates dynamic
finish time prediction, task replication, and task insertion. The algorithm dynam-
ically schedules the tasks based on the finish time of scheduled tasks, replicates
some of the tasks on different nodes, and inserts the tasks into idle time slots to
expedite successive task execution. The simulation results demonstrate that the
proposed algorithm can effectively reduce the jobs’ makespan.

References

1. Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., Li, K.: Efficient task scheduling for bud-
get constrained parallel applications on heterogeneous cloud computing systems.
Future Gener. Comput. Syst. 74(C), 1–11 (2017)

2. Arabnejad, H., Barbosa, J.: Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems. In: 2012 IEEE 10th International Sympo-
sium on Parallel and Distributed Processing with Applications (ISPA), Leganes,
Spain, 10–13 July 2012, pp. 633–639 (2012)

3. Panda, S.K., Jana, P.K.: Efficient task scheduling algorithms for heterogeneous
multi-cloud environment. J. Supercomput. 71(4), 1505–1533 (2015). https://doi.
org/10.1007/s11227-014-1376-6

4. Tsuchiya, T., Osada, T., Kikuno, T.: A new heuristic algorithm based on GAs
for multiprocessor scheduling with task duplication. In: Proceedings of 3rd Inter-
national Conference on Algorithms and Architectures for Parallel Processing, pp.
295–308. IEEE (1997)

5. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)

6. Wang, G., Wang, Y., Liu, H., Guo, H.: HSIP: a novel task scheduling algorithm
for heterogeneous computing. Sci. Programm. 2016, 1–11 (2016)

7. Hamid, A., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems by
an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694 (2014)

8. Duan, Z., Li, W., Cai, Z.: Distributed auctions for task assignment and scheduling
in mobile crowdsensing systems. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 635–644 (2017)

https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1007/s11227-014-1376-6

120 Y. Fan et al.

9. Cai, Z., Duan, Z., Li, W.: Exploiting multi-dimensional task diversity in distributed
auctions for mobile crowdsensing. IEEE Trans. Mob. Comput. (2020)

10. Yu, L., Shen, H., Sapra, K., Ye, L., Cai, Z.: CoRE: cooperative end-to-end traffic
redundancy elimination for reducing cloud bandwidth cost. IEEE Trans. Parallel
Distrib. Syst. 28(2), 446–461 (2017)

11. Yu, L., Chen, L., Cai, Z., Shen, H., Liang, Y., Pan, Y.: Stochastic load balancing
for virtual resource management in datacenters. IEEE Trans. Cloud Comput. 8(2),
459–472 (2020)

12. Choudhari, T., Moh, M., Moh, T.-S.: Prioritized task scheduling in fog computing.
In: Proceedings of the ACMSE 2018 Conference, pp. 1–8 (2018)

13. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

14. Fang, Y., Wang, F., Ge, J.: A task scheduling algorithm based on load balancing
in cloud computing. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010.
LNCS, vol. 6318, pp. 271–277. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16515-3 34

15. Ilavarasan, E., Thambidurai, P., Mahilmannan, R.: Performance effective task
scheduling algorithm for heterogeneous computing system. In: 4th International
Symposium on Parallel and Distributed Computing (ISPDC 2005), Lille, France,
4–6 July 2005, pp. 28–38 (2005)

16. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(6), 384–
393 (1975)

17. Cordeiro, D., Mounié, G., Swann, P., Trystram, D., Vincent, J.-M., Wagner, F.:
Random graph generation for scheduling simulations. In: Proceedings of the 3rd
International ICST Conference on Simulation Tools and Techniques (SIMUTools
2010), Torremolinos, Malaga, Spain, 15–19 March 2010 (2010)

18. Fan, Y., Tao, L., Chen, J.: Associated task scheduling based on dynamic finish
time prediction for cloud computing. In: The 39th IEEE International Conference
on Distributed Computing Systems (ICDCS 2019), Dallas, Texas, USA, 7–10 July
2019 (2019)

https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/978-3-642-16515-3_34

	Multi-job Associated Task Scheduling Based on Task Duplication and Insertion for Cloud Computing
	1 Introduction
	2 Prioritized Associated Task Scheduling Model
	3 Multi-job Task Scheduling Algorithm
	3.1 Task Remaining Time Calculation
	3.2 Selection of the Task to Be Scheduled
	3.3 Allocation of the Server for the Task to Be Scheduled
	3.4 Task Duplication
	3.5 Task Insertion

	4 Simulation
	4.1 Simulation Setup
	4.2 Performance of Algorithm DILS and Impact of Parameters

	5 Conclusion
	References

