
Online Task Scheduling for DNN-Based
Applications over Cloud, Edge

and End Devices

Lixiang Zhong, Jiugen Shi, Lei Shi(B), Juan Xu, Yuqi Fan, and Zhigang Xu

School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei 230009, China

shilei@hfut.edu.cn

Abstract. As a combination of artificial intelligence (AI) and edge com-
puting, edge intelligence has made great contributions in pushing AI
applications to the edge of the network, especially in reducing delay,
saving energy and improving privacy. However, most of researchers only
considered the computation approach of end device to edge server and
ignored the scheduling of multi-task. In this paper, we study DNN model
partition and online task scheduling over cloud, edge and devices for
deadline-aware DNN inference tasks. We first establish our mathemat-
ical model and find the model can not be solved directly because the
solution space is too large. Therefore, we propose the partition point fil-
tering algorithm to reduce the solution space. Then by jointly considering
management of the networking bandwidth and computing resources, we
propose our online scheduling algorithm to meet the maximum number
of deadlines. Experiments and simulations show that our online algo-
rithm reduces deadline miss ratio by up to 51% compared with other
four typical computation approaches.

Keywords: Edge computing · Edge intelligence · Model partition ·
Task scheduling

1 Introduction

In recent years, machine learning, especially deep learning, has attracted signifi-
cant attention from both industry and academia. As the key component of deep
learning, Deep Neural Networks (DNNs) is widely used in various fields, such as
natural language [1], computer vision [2], speech recognition [3] and so on. With
the growth of the number of Internet of Things (IoT) devices, the traditional cloud-
centric computating approach will inevitably lead to network congestion, high
transmission delay and privacy disclosure [4–6]. Therefore, it is a trend to offload
the computation to the end device. However, Internet of Things devices with lim-
ited energy and computing resources cannot afford computing-intensive tasks.

Z. Xu—Supported by the National Natural Science Foundation of China (Grant No.
61806067), the Anhui Provincial Key R&D Program of China (202004a05020040).

c© Springer Nature Switzerland AG 2021
Z. Liu et al. (Eds.): WASA 2021, LNCS 12939, pp. 183–191, 2021.
https://doi.org/10.1007/978-3-030-86137-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86137-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-86137-7_20


184 L. Zhong et al.

Edge computing (EC) is proposed as a promising computing model for solv-
ing these problems by deploying servers at the network edge close to the end
devices [7]. In [8], authors define a query processing problem in an Edge Assisted
IoT Data Monitoring System which aims to deriving a distributed query plan
with the minimum query response latency. In [9,10], the authors studied task
scheduling and resource allocation in edge computing environment for different
scenarios, and the experimental results have been significantly improved. In [11],
authors set the weighted value of the delay sensitivity of the task, and optimized
the offloading strategy of the task with the goal of minimizing the total weighted
corresponding time of all tasks. In addition, edge computing has great potential
in smart cities [12] and smart homes [13].

Indeed, the combination of artificial intelligence and edge computing has
given rise to a new research area, namely edge intelligence, which was proposed
in [14]. Instead of entirely relying on the cloud, edge intelligence makes the most
of the widespread edge resources to perform tasks such as DNN inference. On this
basis, offloading for DNN-based applications in EC has been broadly studied.
In [15], authors proposed the DeepWear model, which uses DNN model parti-
tion to offload tasks to wearable applications, and achieves a good acceleration
effect. In [16], authors realized the task offloading through model partition, and
combined with the model early exit technology to further reduce the delay of
DNN-based applications. In [17], authors proposed the partition and offloading
strategy which can make the optimal tradeoff between performance and privacy
for mobile devices. In [18], authors proposed a technique to divide a DNN in
multiple partitions that can be processed locally by end devices or offloaded to
one or multiple powerful nodes.

Previous work has made some contributions in the field of edge intelligence.
However, most of them only considered the computation approach of end device
to edge server and ignored the scheduling of multi-task. In this paper, for
deadline-aware DNN inference tasks, we study DNN model partition and online
task scheduling over cloud, edge and devices. We first establish our mathematical
model, which can hybridly exploit all the available resources from the cloud, the
edge and the devices to unleash all the full power of the deep learning networks
therein. Since the model contains a large number of variables, which make the
model can not be solved directly because the solution space is too large, we pro-
pose the partition point filtering algorithm to reduce the solution space. Then
by jointly considering management of the networking bandwidth and computing
resources, we propose our online scheduling algorithm to meet the maximum
number of deadlines. Experiments and simulations show that our online algo-
rithm achieves better performance than other typical computing approaches.

The rest of this paper is organized as follows: In Sect. 2, we introduce our
system model and define our problem. In Sect. 3, we give the model partition
filtering algorithm and online scheduling algorithm respectively. In Sect. 4, we
give the simulation results and analyze them. In Sect. 5, we summarize this paper.



Online Task Scheduling for DNN-Based Applications 185

2 System Model and Problem Definition

2.1 DNN Model Partition and Network

Consider a two-dimensional network consists of n servers, m end devices and
one cloud center. Denote C as the could center, sj (sj ∈ S, j = 0, . . . n) as one of
the edge servers and di (di ∈ D, i = 0 . . . m) as one of the end devices. As shown
in Fig. 1, we consider that edge servers are heterogeneous and have different
computing power, end devices are all of the same specifications and have the
same computing power, and cloud center has the strongest computing power.

For the whole task scheduling time T , it is divided into h time slots and each
time slot is expressed as tτ (τ = 0 . . . h). The length of tτ is 1 ms. The task may
be generated at any time slot, and the transmission time and calculation time
of the task are counted in time slot. For one end device, the next task can only
be generated after the current task is completed. Each end device or edge server
can only compute one task at a time and there is no waiting queue, while the
cloud center can compute multiple tasks at the same time. We denote mτ

i as one
of the task, where i means the task is generated by device di, and τ means the
task is generated in the τ -th time slot.

Fig. 1. System model.

We suppose that all tasks are inference tasks of the same DNN model. The
model has r layers, and we denote lk(k = 0, 1 . . . r) as one of the layer. We denote
Gk(k = 0, 1 . . . r) as output data size of the lay lk. It is obvious that G0 means
the size of the input data and Gr means the size of the result of the model.

As shown in Fig. 2, each task can be divided into up to three parts, which can
be computed in turn on the end device, the edge server, and the cloud center.
Therefore, by comprehensively considering all the current tasks, our formulated
problem should not only determine the partition point, but also consider the
appropriate scheduling of the partitioned DNN inference tasks, so that as many
tasks as possible can be completed before the deadline in the scheduling time.



186 L. Zhong et al.

Fig. 2. Four typical DNN partition strategies.

2.2 Problem Formulation

For each task mτ
i , its total completion time t (mτ

i ) can be expressed as

t (mτ
i ) = td (mτ

i ) + t↑e (mτ
i ) + te (mτ

i ) + t↑c (mτ
i ) + tc (mτ

i ) . (1)

The total completion time is made up of five parts. The first part td (mτ
i ) is

the computing time of the task in the end device. The second part t↑e (mτ
i ) is the

transmission time of the intermediate data from the device to the edge server.
The third part te (mτ

i ) is the computing time of the task in the edge server. The
fourth part t↑c (mτ

i ) is the transmission time of the intermediate data from the
edge server to the cloud center, and the fifth part tc (mτ

i ) is the computing time
of the task in the cloud center.

For the td (mτ
i ), we use binary variable xu (mτ

i ) to indicate whether the first
partition point is the layer lu. If the first partition point is the layer lu, xu (mτ

i ) =
1, which means after computing layer lu, the device will upload the intermediate
data to the edge server and no longer participates in the computation of the task
mτ

i . Otherwise, xu (mτ
i ) = 0.

xu (mτ
i ) =

{
1 : the first partition point is the layer lu;
0 : otherwise. (2)

It satisfies
r∑

u=0

xu (mτ
i ) = 1. (3)

We express td (mτ
i ) as the time cost for computation from l0 to lu for di. It

can be calculated by

td (mτ
i ) =

r∑
u=0

(
xu (mτ

i ) ·
u∑

k=0

αk
i

)
, (4)

where αk
i represents the time cost for di to compute the lay lk of DNN model.

For the t↑e (mτ
i ), we use binary variable yj (mτ

i ) to indicate whether the task
mτ

i is uploaded to the edge server sj . If the task is uploaded to the server sj ,
yj (mτ

i ) = 1. Otherwise yj (mτ
i ) = 0.

yj (mτ
i ) =

{
1 : the task is uploaded to the edge server sj ;
0 : otherwise. (5)



Online Task Scheduling for DNN-Based Applications 187

It satisfies
n∑

j=0

yj (mτ
i ) = 1. (6)

Then we express t↑e (mτ
i ) as the time cost for transmission from di to sj . It

can be calculated by

t↑e (mτ
i ) =

n∑
j=0

(
yj (mτ

i ) ·
r∑

u=0

(
xu (mτ

i ) · Gu

bj (mτ
i )

))
, (7)

where bj (mτ
i ) represents the bandwidth allocated between di and sj for mτ

i .
The bandwidth bj (mτ

i ) satisfies

0 < bj (mτ
i ) ≤ b, (8)

n∑
j=0

bj (mτ
i ) ≤ b, (9)

where b represents the total bandwidth between all edge servers and devices.
For the te (mτ

i ), we use binary variable yj (mτ
i ) to indicate whether the second

partition point is lv. If the second partition point is lv, zv (mτ
i ) = 1, which means

after computing layer lv, the edge server will upload the intermediate data to
cloud center. Otherwise, zv (mτ

i ) = 0.

zv (mτ
i ) =

{
1 : the second partition point is the layer lv;
0 : otherwise. (10)

It satisfies
r∑

v=0

zv (mτ
i ) = 1. (11)

It should be noted that when v = u, the edge server does not participate in
the computation of the task and uploads the task directly to cloud center. Then
we express te (mτ

i ) as the time cost for computation from lu+1 to lv of DNN
model for sj . It can be calculated by

ts (mτ
i ) =

r∑
v=0

(
zv (mτ

i ) ·
r∑

u=0

(
xu (mτ

i ) ·
v∑

k=u+1

βk
i

))
, (12)

where βk
i represents the time cost for sj to compute the lay lk of DNN model.

For the t↑c (mτ
i ), we express it as the time cost for transmission from sj to C.

It can be calculated by

t↑c (mτ
i ) =

r∑
v=0

(
zv (mτ

i ) · Gv

bc

)
, (13)

where bc represents the bandwidth between edge servers and cloud center.



188 L. Zhong et al.

For the tc (mτ
i ), we express it as the time cost for computation from lv+1 to

lr of DNN model for cloud center. It can be calculated by

tc (mτ
i ) =

r∑
v=0

(
zv (mτ

i ) ·
r∑

k=v+1

γk
i

)
, (14)

where γk
i represents the time cost for C to compute the lay lk of DNN model.

For each task mτ
i , there is a deadline D (mτ

i ). If t (mτ
i ) > D (mτ

i ), the task
misses its deadline. We denote N as the total number of tasks generated during
the scheduling time and Nmiss as the total number of tasks that missed deadline.
Then the deadline miss rate for tasks is

ηmiss =
Nmiss

N
. (15)

Our problem can be formulated as

min ηmiss

s.t. (3)(4)(6)(7)(8)(9)(11)(12)(13)(14)(15). (16)

In (16), αk
i , Gu, b, βk

i , bc, γk
i are are all constants or determined values for

specific network. xu (mτ
i ), yj (mτ

i ), bj (mτ
i ) and bj (mτ

i ) are variables. However,
these variables appear in almost different forms in all formulas, which makes the
original problem model complex and difficult to solve directly. Therefore, for the
problem to be solved in polynomial time, we need to make further analysis and
find some ways to reduce the complexity of the original problem.

3 Algorithm

In this section, we introduce the algorithm to solve the optimization problem.
In the optimization problem, the variables are xu (mτ

i ), yj (mτ
i ), bj (mτ

i ) and
zv (mτ

i ), which are not independent but restrict each other. The variables zv (mτ
i )

and zv (mτ
i ) which control the partition point will influence the variables yj (mτ

i )
and bj (mτ

i ) which correspond to the scheduling strategy. In order to solve this
problem, we propose online scheduling algorithm for multi-task computation.

3.1 Partition Point Filtering

As we all know, the layered structure of the neural network determines it can
be divided at any layer. However, through the analysis of the structural charac-
teristics and the number of parameters of each layer, we find that some neural
network layers have no potential to become partition point. Therefore, we pro-
pose a DNN partition point filtering algorithm, which can effectively help us
to get a suitable set of partition points κ. We first calculate the corresponding
total delay for different partition points. Then we give a delay baseline L and
take the partition point where the total delay is less than the baseline as the



Online Task Scheduling for DNN-Based Applications 189

optional partition point. Since the number of parameters in each layer in the
DNN model is structural characteristics, these partition points will perform well
on heterogeneous edge servers. At the same time, due to the great reduction of
the number of optional partition points, the solution space of the later algorithm
can be further reduced.

3.2 Online Strategy

For the online strategy, we propose a scheduling solution for multi-task. We
dynamically allocate the bandwidth of the end device and the edge server, and
try to calculate the total task time under the hybrid computing approach. While
minimizing the deadline miss rate, we choose the computation strategy with the
minimum total time. We schedule tasks when there is no idle server, and try to
maximize the computing resources of edge servers by means of preemption.

We first determine the number of tasks nτ generated by the current time
slot, the deadline of the task, and the status sj

sta of each edge server. When sj

is working, sj
sta = 1. Othwewise sj

sta = 0. We denote bτ as the total bandwidth
that can be allocated for the τ -th time slot and nτ

b as the number of servers that
need to allocate bandwidth. We determine the bandwidth between device and
server based on the deadline. We select the optimal partition strategy with the
minimum total computing time, and calculate the time tup

j for the task to be
uploaded to the edge server. When all the partition strategies fail to meet the
deadline requirements of the task, we will upload the task to S0, where S0 does
not participate in the computation of the task.

It should be noted that after the end device completes the computation,
the edge server starts to compute at time tup

j . The computing resources of the
edge server are available during this period of time. When all edge servers are
scheduled but there are still tasks, we first try to use the partition strategy to
schedule these tasks. If there is no edge server that meets the requirements, we let
the task compute on the edge server as much as possible and choose the partition
strategy with the minimum total time. If the task still cannot be completed by
the deadline, we upload the task to S0.

4 Simulation and Experiment

In this section, we present experiments to demonstrate the performance of our
algorithms. The DNN model in experiments is VGG16 and the input data is a
set of RGB images with each of the size is 320 × 320 × 3. All tasks in our system
are inference task and the programming backend is pytorch. The devices are HP
notebook computers with Inter Core i5-6200U 2.3 GHz quad core CPU. The edge
servers are computers with different processors. The cloud center is the Google
Cloud Platform with NVIDIA Ampere A100 GPU.

We first get the values of αk
i , βk

i , γk
i and Gk and then calculate the total

computing time under different partition points and get the optional partition
point set κ. We deploy several end devices, 8 edge servers, and a cloud center in



190 L. Zhong et al.

the network. The total bandwidth b is set to 800 Mbps, where s0 = 100Mbps,
bc = 35Mbps. h is set to 1000. We get the deadline miss rate ηmiss under
five different approaches and the result of each approach is the average of 20
repeated experiments. According to the analysis of the structural characteristics
of VGG16, we find that there are five points have the smallest amount of inter-
mediate data. Therefore, we believe that whether these five partition points can
perform well in any case.

In 1000 time slots, for a different number of tasks, we get the deadline miss
rate ηmiss under five different computation approaches. The result is shown in
Fig. 3.

Fig. 3. Simulation result. (a) Deadline miss ratio under different number of tasks. (b)
Average time cost under different number of tasks

As shown in the Fig. 3(a), when the number of tasks increases gradually,
the performance online scheduling algorithm is obviously better. In Fig. 3(b), we
show the average completion time of a task. Obviously, our online algorithm has
an advantage in any number of tasks.

5 Conclusion

In this paper, we study DNN model partition and online task scheduling over
cloud, edge and devices for deadline-aware DNN inference tasks. We first estab-
lish our mathematical model and find that the model contains a large number of
variables. Therefore, we propose the partition point filtering algorithm to reduce
the solution space. Then we propose our online scheduling algorithm to meet
the maximum number of deadlines. Experiments and simulations show that our
online algorithm reduces deadline miss ratio by up to 51% compared with other
four typical computation approaches.

References

1. Li, H.: Deep learning for natural language processing: advantages and challenges.
Nat. Sci. Rev. 5, 24–26 (2018)

2. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition, pp. 41.1–41.12.
BMVA Press (2015)



Online Task Scheduling for DNN-Based Applications 191

3. Nassif, A.B., Shahin, I., Attili, I.B., Azzeh, M., Shaalan, K.: Speech recognition
using deep neural networks: a systematic review. IEEE Access 7, 19143–19165
(2019)

4. Li, S., Xu, L., Zhao, S.: The internet of things: a survey. Inf. Syst. Front. 17,
243–259 (2015)

5. Chettri, L., Bera, R.: A comprehensive survey on internet of things (iot) toward
5G wireless systems. IEEE Internet Things J. 7, 16–32 (2020)

6. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart
cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7, 766–775 (2020)

7. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3, 637–646 (2016)

8. Cai, Z., Shi, T.: Distributed query processing in the edge assisted IoT data moni-
toring system. IEEE Internet Things J. 8, 12679–12693 (2020)

9. Zhu, T., Shi, T., Li, J., Cai, Z., Zhou, X.: Task scheduling in deadline-aware mobile
edge computing systems. IEEE Internet Things J. 6, 4854–4866 (2019)

10. Duan, Z., Li, W., Cai, Z.: Distributed auctions for task assignment and scheduling
in mobile crowdsensing systems. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 635–644 (2017)

11. Han, Z., Tan, H., Li, X., Jiang, S.H., Li, Y., Lau, F.C.M.: Ondisc: online latency-
sensitive job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM
Trans. Netw. 27, 2472–2485 (2019)

12. Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.M.A., Tri, N.D., Hong, C.: Edge-
computing-enabled smart cities: a comprehensive survey. IEEE Internet Things J.
7, 10200–10232 (2020)

13. Alam, M.R., Reaz, M., Ali, M.A.: A review of smart homes: past, present, and
future. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42, 1190–1203 (2012)

14. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving
the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–
1762 (2019)

15. Xu, M., Qian, F., Zhu, M., Huang, F., Pushp, S., Liu, X.: Deepwear: adaptive
local offloading for on-wearable deep learning. IEEE Trans. Mobile Comput. 19,
314–330 (2020)

16. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge AI: on-demand accelerating deep neural
network inference via edge computing. IEEE Trans. Wirel. Commun. 19, 447–457
(2020)

17. Shi, C., Chen, L., Shen, C., Song, L., Xu, J.: Privacy-aware edge computing based
on adaptive DNN partitioning. In: 2019 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6 (2019)

18. Mohammed, T., Joe-Wong, C., Babbar, R., Francesco, M.D.: Distributed inference
acceleration with adaptive DNN partitioning and offloading. In: IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, pp. 854–863 (2020)


	Online Task Scheduling for DNN-Based Applications over Cloud, Edge and End Devices
	1 Introduction
	2 System Model and Problem Definition
	2.1 DNN Model Partition and Network
	2.2 Problem Formulation

	3 Algorithm
	3.1 Partition Point Filtering
	3.2 Online Strategy

	4 Simulation and Experiment
	5 Conclusion
	References




