
A Priority Task Offloading Scheme Based
on Coherent Beamforming and Successive

Interference Cancellation for Edge
Computing

Zhehao Li, Lei Shi(B), Xu Ding, Yuqi Fan, and Juan Xu

School of Computer Science and Information Engineering,
Intelligent Interconnected Systems Laboratory of Anhui Procince,

Hefei University of Technology, Hefei 230009, China
shilei@hfut.edu.cn

Abstract. In edge computing environment, edge servers are generally
more closer to edge devices which can guarantee time sensitive tasks
be completed under their strict requirements. However, with the rapid
increase of edge devices and the limited computing resources of edge
servers, this guarantee is becoming more and more difficult. In this paper,
by using two physical layer techniques, we try to give communication
tasks more opportunities for executing under edge computing environ-
ment. In specific words, we propose a priority task scheduling scheme
based on coherent beamforming (CB) technique and successive interfer-
ence cancellation(SIC) technique. CB technique give edge devices the
chance to be transmitted to distant edge servers, and SIC technique give
communication tasks more chance to be received by edge servers. How-
ever, these two techniques need some strict conditions for realizing, and
if we consider the computing work and the communicating work simulta-
neously, the problem will become very complex. We first build the system
model and analyze it, and show the model a NP-hard problem and can-
not be solved directly. Then in our algorithm, we first determine the task
transmission of each time slot in turn, and set the fitness threshold so
that each task can select the most suitable edge server. After tasks arrive
at servers, we insert them into task queues according to their priorities.
In simulations, we compare our scheme with other three schemes. Sim-
ulation results show that our scheme can improve the task completion
rate and reduce completion delay.

Keywords: Edge computing · Task offloading · Coherent
beamforming · Successive interference cancellation

Supported by the National Natural Science Foundation of China (Grant No. 61806067),
the Anhui Provincial Key R&D Program of China (202004a05020040).

c© Springer Nature Switzerland AG 2021
Z. Liu et al. (Eds.): WASA 2021, LNCS 12937, pp. 416–428, 2021.
https://doi.org/10.1007/978-3-030-85928-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85928-2_33&domain=pdf
https://doi.org/10.1007/978-3-030-85928-2_33

A Priority Task Offloading Scheme 417

1 Introduction

Comparing with the cloud computing [1], in the edge computing structure [2,3],
servers are positioned at the edge of the network, which can greatly reduce the
distances between edge devices and edge servers [4]. In this way, if edge devices
need to unload tasks to servers for computing, there is no need for long-distance
transmissions [5]. This will reduce the transmission delay [6] and improve the
quality of service [7,8]. However, unlike cloud servers, edge servers usually have
limited power. Meanwhile many application tasks are time sensitive and must
be completed within specified times [9]. Therefore, when the number of tasks is
large, a single edge server may not be able to ensure all tasks completed within
the specified time. In this case, the server usually migrates tasks to other edge
servers for computing [10,11]. But this will increase the task executing cost,
especially for the edge computing environment with 5G techniques [12]. Since
the 5G base station has a small coverage compared with the 4G’s.

The coherent beamforming (CB) technique is one kind of cooperative com-
munication technologies which are usually used on the transmitters. In [13],
authors use distributed coherent communication techniques to enable extended-
range communications. In [14], authors proposed a CB technique scheme with
minimum transmitting power for multi-input-single-output (MISO) communi-
cation with limited rate feedback. In [15], for long-distance communication, the
author proposes a distributed optimization solution based on CB technique,
which significantly improves the network performance. In [16], authors derive an
approximation of the coverage probability of the CB scheme by leveraging two
scaling factor. This means that edge devices can directly transmit tasks to dis-
tant targets and avoid transmission delay. In this way, we can directly transfer
tasks to edge servers with sufficient computing resources.

Unlike the CB technique, the successive interference cancellation (SIC) tech-
nique is used on the receivers. Since in the edge computing environment, many
edge devices may transmit simultaneously and these may cause lots of interfer-
ence. By using SIC technique, edge server can accept multiple signals at the same
time, and decode the signals in turn according to the signal-to-noise ratio(SINR).
In [17], authors propose a heuristic algorithm and use SIC to obtain a bandwidth
sensitive high throughput protocol. In [18], authors propose a cross-layer opti-
mization framework for SIC that incorporates variables at physical, link, and
network layers, and prove the validity of this framework. In [19], authors pro-
posed a neighbor discovery algorithm based on SIC technique.

In this paper, we combine CB and SIC technique, and apply it to the task
offloading in edge computing environment. Because there will be multiple tasks
in the server at the same time, the newly arrived task is unlikely executed imme-
diately. These tasks will be stored in the server’s task queues [20]. Therefore, it
is extremely important to select a suitable position for the task in the queue.
Many researchers build task queues based on the order in which tasks arrive at
the server, and we will choose the appropriate position of new arrival tasks in the
queue according to the task priority. The main work of this paper as follow: (1)
In a two-dimensional network with multiple nodes and servers, we use CB tech-
nique at transmitter and SIC technique at receiver. We select the appropriate

418 Z. Li et al.

processing server for each task. (2) In edge server, we build the queue according
to the actual situation of task. Our goal is try to make all the tasks done within
the specified time.

The rest of this paper is organized as follows: In Sect. 2, we build the system
model. In Sect. 3, we design a scheduling algorithm according to the model and
try to get a feasible solution. In Sect. 4, we give the simulation results in different
environments and analyze them. In Sect. 5, we summarize the whole paper.

2 System Model

Consider an edge computing network is consisted with m edge servers and u
edge devices in a two-dimensional area(see in Fig. 1). Define D as the set of
edge devices and di(di ∈ D, 1 � i � u) as one edge device. Suppose all devices
have the same transmission power P . Define S as the set of edge servers and
sj(si ∈ S, 1 � j � m) as one edge server. We divide the whole scheduling time
T into h time slots, and denote tk(1 � k � h) as one time slot. Suppose edge
devices will generate tasks randomly, and suppose all tasks need to be uploaded
for calculating. Define V as the set of tasks and vpi[k](1 � p � n) as one task,
where p means the task is the p-th task generated in the whole network, i and
k indicate that the task is generated by edge device di in the time slot tk.

Fig. 1. Edge servers, edge devices in the network

Define γp as the time of maximum completion delay, which means for each
task, it should be completed within γp, or we think this task is a failure task.
Suppose edge servers are heterogeneous, and they have different calculation capa-
bilities. In this paper, we consider the impact of transmission interference on task
offloading. Therefore, in order to reduce the delay of task transmission to the
edge server, we use CB and SIC technique. Define Tp as the time consumed by
task vpi[k]. We have

Tp = Tu[p] + Ts[p] + Tc[p], (1)

A Priority Task Offloading Scheme 419

where Tu[p] is the transmission time, Ts[p] is the waiting time in task queue and
Tc[p] is the calculation time. In the following we will give these three times in
order. We will first give some symbols for preparation, then give the expressions
of these times.

Define ep(f) to indicate whether task vpi[k] is uploaded to a server, i.e.

ep(f) =
{

1 : if task vpi[k] has been uploaded to server in time slot tf ;
0 : otherwise.

There are two steps for a transmission when using the CB technique. First,
an edge device broadcasts its data to the surrounding devices. Second, multiple
devices cooperate to transmit tasks to the server by CB technique. Define xp(f)
and yp(f) to indicate the transmission states, then we have

xp(f) =
{

1 : if the task vpi[k] is broadcasting at time slot tf ;
0 : otherwise.

yp(f) =
{

1 : if the task vpi[k] is transmitting to an server at time slot tf ;
0 : otherwise.

Obviously, task vpi[k] can only be in one transmission state in the same time
slot. For the convenience of representation, we think xi(f) = 0 when not using
CB technique. Therefore, we have

xp(f) + yp(f) � 1 (1 � f � h). (2)

When using the SIC technique, edge servers may receive signals at the same
time if the SINR requirement is satisfied. Define β as the SINR threshold. When
task vpi[k] is uploaded to edge sever sj , we have

SINRk
p→sj

· yp(f) =
Pp,sj

· yp(f)

N0 +
p≥q∑

Pp �=Pq

Pq,sj
· yq(f)

� β · yp(f),
(3)

where N0 is the noise power and Pp,sj
is the transmission power of the task vpi[k]

to sj . For Pp,sj
, if CB technique is not used for transmitting, we have Pp,sj

=
(hi,sj

)2P , and if CB technique is used, we have Pp,sj
= (

∑
dg∈Di(f)

hg,j)2P ,
where (hg,sj

)2 is the channel gain between the edge device dg and the edge server
sj , and Di(f) is the set of edge devices assisting the transmission of device di

by CB technique at time slot tf .
When di broadcasts task vpi[k] to the surrounding devices for preparing the

CB transmission, it also needs to meet the SINR requirement. Otherwise, there
will be interference and the broadcasting can not be carried out smoothly. So
we have

SINRk
p→Di(f)

· xp(f) =
(hp,dg

)2P · xp(f)

N0 +
p≥l∑

Pp �=Pl

(hl,dg
)2P · xl(f) +

p≥q∑
Pp �=Pq

Pq,dg
· yq(f)

� β · xp(f) (dg ∈ Di(f)).

(4)

420 Z. Li et al.

According to Shannon formula, we can get the broadcast transmission rate
and the CB transmission rate. We have

rp→Di(f) = rp→sj
= Wlog2(1 + β). (5)

Now we give the formula of the first time Tu[p]. Notice that when vpi[k]
is being uploaded and if CB technique is used, the transmission time can be
divided into three parts. One, waiting time tw[p] for other’s broadcasting or CB
transmitting. Two, broadcasting time tb[p]. Three, CB transmitting time tc[p];
Define Rp as the amount of data for the task vpi[k]. For tb[p] and tc[p], we have

{
tb[p] = Rp

rp→Di(f)
,

tc[p] = Rp

rp→sj
.

(6)

For tw[p], we can further divide it into two parts. The first part is the waiting
time for other’s broadcasting. The second part is the waiting time for other’s
CB transmitting. So we have

tw[p] =
h∑

l=0

((1 − xp(l)) · (1 − ep(l))) · τ +
h∑

l=0

((1 − yp(l)) · (1 − ep(l))) · τ, (7)

where τ is the length of a time slot. Then we can express Tu[p] as

Tu[p] = tb[p] + tc[p] + tw[p]. (8)

For the second time Ts[p], we know after a new task vpi[k] arrives at the
server, it will be put into the server’s task queue. The position in the queue is
determined according to the priority of the task. Define zp,j(f) as

zp,j(f) =
{

1 : f � Tu[p]
t + k

0 : otherwise.

Apparently if zp,j(f) = 1, it means that task vpi[k] has arrived to sj at tf .
The waiting time Tw[p] depends on vpi[k]’s position in the task queue. The

higher the position in the queue, the shorter the waiting time. We set a priority
variable ωp(f) for task vpi[k] in time slot tf . The priority is affected by the remain-
ing completion time. So in different time slots, the value of priority is different.
When the priority of task is higher, its position in the queue is higher. At the same
time, tasks that have arrived at edge server and have been completed before the
time slot tf must not exist in the queue. Define funj(Dp) as a function of the time
taken by the task vpi[k] to calculate on sj . Define Dl as calculation amount. There-
fore, for the waiting time Tw[p] of task vpi[k] in the queue, we have

Ts[p] =
∑

ωl(f)>ωp(f)

(
∑

Tl
t +k�f

funj(Dl) · zp,j(f)),
(9)

where Tl is the time taken for task vli[k] to complete.

A Priority Task Offloading Scheme 421

Now we give the expression of the third time Tc[p]. Tc[p] can be expressed as

Tc[p] = funj(Dp). (10)

Define γp as the maximum completion delay of task vpi[k]. If the time Tp ≤ γp,
we think vpi[k] is handled successful. Define Nc as the set of all successful tasks.
Our optimization goal is to maximize the task completion rate C. We have

max C

s.t. C = |Nc|
n

vpi[k] ∈ Nc, (Tp � γp)
(1), (2), (3), (4), (5), (6), (7), (8), (9), (10).

(11)

In Eq. (11), variables such as xp(f), yp(f), ep(f) and zp,j(f) determine the time
Tp taken to complete task vpi[k]. The value of ep(f), zp,j(f) is affected by xp(f)
and yp(f). If the values of xp(f), yp(f) can be determined, ep(f), zp,j(f) can
be determined, the problem can be solved. But it’s very difficult. The xp(f),
yp(f) of these tasks cannot be determined directly. Therefore, it is difficult to
determine the value of ep(f), zp,j(f) in each time slot. The queue condition on
the edge server is also difficult to determine. This kind of problem is NP-hard
and cannot be solved directly. Therefore, we design a heuristic algorithm, hoping
to get a feasible solution.

3 Scheduling Algorithm

As Eq. (11) is NP-hard and can not be solved directly, we need to take other
strategies to solve this problem. If we can determine the values of xp(f), yp(f),
ep(f) and zp,j(f), the model can be solved. However, it is very difficult to get the
values of these variables. We have three problems: (1) Which task is calculated
on which server? (2) When is the task transferred? (3) How long does it take for
a task to arrive at the server?

To solve these problems, variables can be determined. Therefore, we design
a heuristic algorithm to solve these problem and determine variables in the
Eq. (11), so as to get the solution of the model. Through the analysis of the
model, we divide the whole algorithm into three steps: (1) Edge server selection;
(2) Task transmission; (3) Build task queue. Next, we will introduce these three
steps in detail.

3.1 Edge Server Selection

We now discuss the Edge Server Selection algorithm. Since there are multiple
edge servers in the whole network, we need to select a suitable server for each
task to perform its calculation. We first define a variable αpj(f) to indicate the
fitness of the edge server sj for the task vpi[k]. We have

αpj(f) =
γp(f) − ∑

vli[k]∈Mj(f)
Tl

Tc[p]
, (12)

422 Z. Li et al.

where Mj(f) is the set of tasks on the sj at tf , γp(f) is the remaining completion
time of vpi[k] at tf .

We will calculate αpj(f) in each time slot for all tasks which have not yet
transmitted to servers, and then select the most fitness server based on the
following rules.

One, confirm that the selected edge server is in the transmission range of
the now considered edge device. Notice that in our network, even when using
CB technique, for some edge devices, some servers may not be reached. This
transmissions should be excluded first.

Two, αpj(f) > α, where α is a fitness threshold.
Three, if for a task there exists some servers can be reached directly, i.e., not

using CB technique, we will selected the closest one for this task. Otherwise, we
will select the one with the largest αj(f) value for this task. Since comparing
with direct transmitting, CB technique will cause more interference and will lead
a complexity transmission. So we have this rule.

According to the above three rules, we can select the target edge server for
each task. We have Algorithm 1.

Algorithm 1: Edge Server Selection
Input: the set of task V , the set of server S, fitness threshold α,

Mj(f)(1 � j � m).
Output: Task’s corresponding edge server E[v, s]

1 for every server sj in S do
2 for every task vli[k] in Mj(f) do
3 get

∑
vli[k]∈Mj(f)

Tl

4 end
5 end
6 for every task vpi[k] in V do
7 flag1 ← 0, f lag2 ← 0;
8 if the task needs to select a server then
9 for every server sj in single-hop range do

10 find a server with biggest αpj(f) and αpj(f) > α;
11 end
12 end
13 if there is no suitable server in single-hop range then
14 for every server sj not in single-hop range do
15 find a nearest server with αpj(f) > α;
16 end
17 end
18 if flag1=0,flag2=0 then
19 find nearest server sj ; E[v, s] ← vpi[k], sj ;
20 end
21 end

A Priority Task Offloading Scheme 423

3.2 Task Transmission

For the first step, we have confirmed edge servers for all tasks at current time slot.
However, even using SIC technique, we can not realize all tasks be transmitted
without interference. So in this step, we will decide which tasks will really be
transmitted at current time slot, i.e., the Task Transmission algorithm. The main
step of the Task Transmission algorithm is as following.

One, based on the remaining completion time γp(f), sort all tasks from the
smallest to the largest and get a task queue.

Two, check the task queue one by one, and based on SIC technique, decide
the first transmitted task for each server. We give some explanations. Notice
that the first task in the queue can be decided directly. Then for the second
task, there may have three situations. First, the selected server is the same with
the first one, then we skip this task and continue to check the following tasks.
Two, the selected server is not the same with the first one, but this task will
interference the first one even when using SIC, i.e., Eq. (3) or (4) will not be
satisfied after adding this task, then we skip this task and continue to check the
following tasks. Three, the selected server is not the same and this task will not
interference with the first one, then we can decide this task. We will do it until
all tasks in the queue have been checked.

Three, check the task queue again, and decide more transmitted tasks. In
this step we will try to check the tasks in the queue which have not be decided
again, and check if Eq. (3) or (4) can be satisfied when the task is added. If it
can be satisfied, we will decide the task.

The detail steps can be found in Algorithm 2.

Algorithm 2: Task Transmission
Input: Task’s corresponding edge server E[v, s], the set of task V , the set

of edge server S
Output: Updated task status

1 for every unfinished transfer task vpi[k] do
2 find a task vpi[k] with the least γp(f);
3 find the corresponding server sj in E[v,s];
4 transfer task vpi[k] to sj ;
5 for every server in S do
6 if No tasks are transferred to the server sj then
7 find a task vpi[k] with the least γp(f);
8 vpi[k],sj in E[v, s];
9 If there is no interference, transfer the task;

10 end
11 end
12 end
13 for every unfinished transfer task vpi[k] do
14 find the corresponding server in E[v,s];
15 If there is no interference, transfer the task;
16 end

424 Z. Li et al.

3.3 Build Task Queue

Each time when a new task reaches to a server, instead of putting the task to
the tail of the task queue directly, we want to give an algorithm to decide the
suitable position in the queue, i.e., the Task Queue algorithm. To do that, denote
a priority value ωp(f) for task vpi[k] at time slot tf , we have

ωp(f) =
Tc[p]
γp(f)

. (13)

We will calculate each ωp(f), and sort them from the largest to the smallest,
then get a new queue. The detail steps can be seen in Algorithm 3.

Algorithm 3: Task queue update
Input: the set of task V , the set of edge server S, Mj(f)(1 � j � m)
Output: Task queue after update

1 for every server in S do
2 find the first task vli[k] in task queue;
3 calculates the first task vli[k];
4 if the vli[k] is completed then
5 remove this task from the task queue; Mj(f) → vli[k];
6 end
7 end
8 for every server in S do
9 for every task vpi[k] arrived at the server do

10 ωp(f) = Tp

γp(f)
;

11 find the right location according to ωp(f);
12 insert task vpi[k] into task queue; Mj(f) ← vpi[k];
13 end
14 end

4 Simulation Result

In this section, we give simulation results. Consider 3 edge servers and 20 edge
devices deployed randomly in a 1000 m × 1000 m square area. Edge devices
generate tasks randomly at different time slots. The whole time T is divided
into 100 time slots. For these 3 edge servers, we set the processing speed is
3 GHz, 4 GHz and 5 GHz, respectively. For edge devices, we set transmission
power P = 1 W. For tasks, we set the range of data amount Rp from 1 and
3 MB, and the maximum completion delay γp from 25 and 30 timeslots. We set
N0 = 10−15W, β = 1 and W = 1 GHz. In the following we will first analyze the

A Priority Task Offloading Scheme 425

influence of fitness threshold α on the experimental results, and then compare
our CB-SIC PRO scheduling scheme with CB-FIFO PRO, SIC PRO and SIC
FIFO scheme in the same environment.

4.1 The Effect of Fitness Threshold α

In order to show the effect of the threshold α to the task completion rate and
completion delay in different environments, we adjust the generated number
of tasks randomly in the network. The number of tasks was 40, 50, 60 and
70 respectively. We first carry out the experiment according to CB-SIC PRO
scheme. The experimental results are shown in the Fig. 2.

We can see that the change of α has a significant impact on the experimental
results. In Fig. 2(a), we show the change of task completion rate under different
α. We can see that when the number of tasks is 40, with the gradual increase
of α, the task completion rate first rises slowly, then gradually decreases, and
finally remains unchanged. When the α = 0, the task completion rate is 98.2%.
When the α = 14, the task completion rate reaches 100%. It begins to decrease
when the α = 22. When the task completion rate drops to 98.2%, it remains
unchanged. When the task number is 40, the completion rate remains at a high
level, so the effect of α is not very obvious. With the increase of the task number,
we can see that the fitness threshold α has a great impact on the task completion
rate. Especially when the task number is 60, the lowest task completion rate is
79.1% while the highest is 94.8%. There is a 15.7% gap in task completion rate.

Fig. 2. The effect of the threshold α on the CB-SIC PRO scheme

We can also find that although the completion delay has a similar perfor-
mance from Fig. 2(b). No matter how the number of tasks in the network changes,
the task completion delay will first decrease, then slowly increase and finally
remain unchanged with the increase of the threshold.

426 Z. Li et al.

4.2 Comparison of Experimental Results

Fig. 3. Comparison of task completion rate

In Sect. 4.1, we find that when the fitness threshold α = 18, CB-SIC PRO scheme
can achieve good task completion rate and delay. Therefore, we set α = 18 to
carry out the following experiments. We generated the number of tasks randomly
from 30 to 70, with the step 10. We get the change of task completion rate with
different task number, and compare it with other schemes including CB-SIC
FIFO, SIC FIFO and SIC PRO. The experimental results are shown in the
Fig. 3.

In Fig. 3(a), we compare the task completion rate. We find that with the
increase of the task number, the completion rate of all programs gradually begins
to decline. But the task completion rate of CB-SIC PRO scheme is much higher
than that of other schemes, and the decrease is the lowest. In Fig. 3(b), we
compare the task completion delays. As the task number increases, the task
completion delay will increase. However, CB-SIC PRO scheme has the lowest
growth rate. It’s task completion delay is always lower than the other three
scheme.

Compared with the three comparative experiments, the task completion rate
of our proposed scheme is much higher than other schemes, and the average task
completion delay is also lower than other schemes. And with the increase of the
number of tasks, the gap will become more and more obvious.

5 Conclusion

In this paper, a priority scheduling scheme is designed to improve the task com-
pletion rate for edge computing based on CB and SIC technique. When the
computing resources of the nearest edge server are insufficient, edge devices can
directly transfer tasks to remote idle edge server for computing. We first build
a mathematical model according to the network structure. However, this model
is NP-hard, which is difficult to solve directly. Therefore, we analyze the model

A Priority Task Offloading Scheme 427

and design a heuristic algorithm. In order to enable the task to be unloaded to
a suitable edge server, we set the fitness threshold α and calculate the value of
αpj(f). We sort the task queue in edge server according to the task priority. In
simulation experiments, we first show and analyze the influence of fitness thresh-
old α. The results show that the task completion rate and completion delay will
change with the change of α. Then the task completion rate and completion
delay are compared. The results show that compared with other schemes, CB-
SIC PRO scheme significantly improves the task completion rate and reduces
the task completion delay.

References

1. Yu, L., Cai, Z.: Dynamic scaling of virtual clusters with bandwidth guarantee in
cloud datacenters. In: IEEE INFOCOM 2016 - The 35th Annual IEEE Interna-
tional Conference on Computer Communications, pp. 1–9 (2016)

2. Xia, X., Chen, F., He, Q., Grundy, J.C., Abdelrazek, M., Jin, H.: Cost-effective
app data distribution in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(1),
31–44 (2021)

3. Liu, Y., Li, Y., Niu, Y., Jin, D.: Joint optimization of path planning and resource
allocation in mobile edge computing. IEEE Trans. Mobile Comput. 19(9), 2129–
2144 (2020)

4. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing.
Proc. IEEE 107(8), 1584–1607 (2019)

5. Dolui, K., Datta, S.K.: Comparison of edge computing implementations: fog com-
puting, cloudlet and mobile edge computing. In: 2017 Global Internet of Things
Summit (GIoTS), pp. 1–6 (2017)

6. Charyyev, B., Arslan, E., Gunes, M.H.: Latency comparison of cloud datacenters
and edge servers. In: GLOBECOM 2020–2020 IEEE Global Communications Con-
ference, pp. 1–6 (2020)

7. Wei, X., et al.: MVR: an architecture for computation offloading in mobile edge
computing. In: 2017 IEEE International Conference on Edge Computing (EDGE),
pp. 232–235 (2017)

8. Cai, Z., Shi, T.: Distributed query processing in the edge assisted IoT data moni-
toring system. IEEE Internet Things J. 7(9), 1–1 (2020)

9. Zhu, T., Shi, T., Li, J., Cai, Z., Zhou, X.: Task scheduling in deadline-aware mobile
edge computing systems. IEEE Internet Things J. 6(3), 4854–4866 (2019)

10. Ding, Y., Liu, C., Li, K., Tang, Z., Li, K.: Task offloading and service migration
strategies for user equipments with mobility consideration in mobile edge com-
puting. In: 2019 IEEE International Conference on Parallel Distributed Processing
with Applications, Big Data Cloud Computing, Sustainable Computing Communi-
cations, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom),
pp. 176–183 (2019)

11. Schäfer, D., Edinger, J., Breitbach, M., Becker, C.: Workload partitioning and task
migration to reduce response times in heterogeneous computing environments. In:
2018 27th International Conference on Computer Communication and Networks
(ICCCN), pp. 1–11 (2018)

12. Liu, Y., Peng, M., Shou, G., Chen, Y., Chen, S.: Toward edge intelligence: multi-
access edge computing for 5g and internet of things. IEEE Internet Things J. 7(8),
6722–6747 (2020)

428 Z. Li et al.

13. Scherber, D., et al.: Coherent distributed techniques for tactical radio networks:
enabling long range communications with reduced size, weight, power and cost.
In: MILCOM 2013–2013 IEEE Military Communications Conference, pp. 655–660
(2013)

14. Marques, A.G., Wang, X., Giannakis, G.B.: Minimizing transmit power for coher-
ent communications in wireless sensor networks with finite-rate feedback. IEEE
Trans. Sig. Process. 56(9), 4446–4457 (2008)

15. Shi, Y., Sagduyu, Y.E.: Coherent communications in self-organizing networks with
distributed beamforming. IEEE Trans. Veh. Technol. 69(1), 760–770 (2020)

16. Kong, J., Dagefu, F.T., Sadler, B.M.: Coverage analysis of distributed beamforming
with random phase offsets using Ginibre point process. IEEE Access 8, 134351–
134362 (2020)

17. Liu, R., Shi, Y., Lui, K., Sheng, M., Wang, Y., Li, Y.: Bandwidth-aware high-
throughput routing with successive interference cancelation in multihop wireless
networks. IEEE Trans. Veh. Technol. 64(12), 5866–5877 (2015)

18. Jiang, C., et al.: Cross-layer optimization for multi-hop wireless networks with
successive interference cancellation. IEEE Trans. Wirel. Commun. 15(8), 5819–
5831 (2016)

19. Liang, Y., Wei, Z., Chen, Q., Wu, H.: Neighbor discovery algorithm in wire-
less ad hoc networks based on successive interference cancellation technology. In:
2020 International Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1137–1141 (2020)

20. Adhikari, M., Mukherjee, M., Srirama, S.N.: DPTO: a deadline and priority-aware
task offloading in fog computing framework leveraging multilevel feedback queue-
ing. IEEE Internet Things J. 7(7), 5773–5782 (2020)

	A Priority Task Offloading Scheme Based on Coherent Beamforming and Successive Interference Cancellation for Edge Computing
	1 Introduction
	2 System Model
	3 Scheduling Algorithm
	3.1 Edge Server Selection
	3.2 Task Transmission
	3.3 Build Task Queue

	4 Simulation Result
	4.1 The Effect of Fitness Threshold
	4.2 Comparison of Experimental Results

	5 Conclusion
	References

