
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 202 (2022) 158–163

1877-0509 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and Knowledge
in the Internet of Things, 2021
10.1016/j.procs.2022.04.022

10.1016/j.procs.2022.04.022 1877-0509

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and
Knowledge in the Internet of Things, 2021

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

International Conference on Identification, Information and Knowledge in the internet of Things,
2021

Online Task Scheduling Algorithm with Complex Dependencies in
Edge Computing

Lei Shia, Zhaoxing Maa, Yuqi Fana, Yi Shib, Xu Dinga, Zhehao Lia
aSchool of Computer Science and Information Engineering, Intelligent Interconnected Systems Laboratory of Anhui Procince, Hefei University of

Technology, Hefei 230009, China
bVirginia Tech, Dept. of ECE, Blacksburg, VA 24061, USA

Abstract

In the edge computing network environment, our applications can be deployed on edge servers. The request to execute the appli-
cation can be produced on the edge device and transmitted to the edge server for calculation. A complex request may be divided
into multiple computing tasks and transmitted to different servers and then parallel calculated before obtaining the final result. How
to schedule computing tasks in multiple requests so that all requests can be completed faster is a difficult problem, especially in
the edge computing environment where we should consider the communicating work and the calculating work simultaneously. In
this paper, we first build a task dependency model of the computing tasks included in the request based on the idea of dividing
the method components of the application. The dependencies include sequence, selection and parallel. Then we propose an online
scheduling algorithm MCOS based on optimizing the task with the maximum amount of calculation to solve the problem of the
minimum sum of the completion time of all requests. In simulations, we show the algorithm MCOS has a better completion time.

c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and
Knowledge in the Internet of Things, 2021.

Keywords: Edge computing; Online scheduling; Dependent task;

1. Introduction

With the development of cloud computing [1, 2], devices with limited computing resources can expand their capa-
bilities by offloading computationally intensive tasks to remote clouds. However, due to the long distance between the
device and the remote cloud, severe communication delays will inevitably occur. The situation is even worse when
large amount of data needs to be transferred. In order to alleviate this problem, edge computing is proposed as a

∗ Corresponding author. Tel.: +86-188-5696-4308.
E-mail address: yuqi.fan@hfut.edu.cn

1877-0509 c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and Knowledge in the
Internet of Things, 2021.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

International Conference on Identification, Information and Knowledge in the internet of Things,
2021

Online Task Scheduling Algorithm with Complex Dependencies in
Edge Computing

Lei Shia, Zhaoxing Maa, Yuqi Fana, Yi Shib, Xu Dinga, Zhehao Lia
aSchool of Computer Science and Information Engineering, Intelligent Interconnected Systems Laboratory of Anhui Procince, Hefei University of

Technology, Hefei 230009, China
bVirginia Tech, Dept. of ECE, Blacksburg, VA 24061, USA

Abstract

In the edge computing network environment, our applications can be deployed on edge servers. The request to execute the appli-
cation can be produced on the edge device and transmitted to the edge server for calculation. A complex request may be divided
into multiple computing tasks and transmitted to different servers and then parallel calculated before obtaining the final result. How
to schedule computing tasks in multiple requests so that all requests can be completed faster is a difficult problem, especially in
the edge computing environment where we should consider the communicating work and the calculating work simultaneously. In
this paper, we first build a task dependency model of the computing tasks included in the request based on the idea of dividing
the method components of the application. The dependencies include sequence, selection and parallel. Then we propose an online
scheduling algorithm MCOS based on optimizing the task with the maximum amount of calculation to solve the problem of the
minimum sum of the completion time of all requests. In simulations, we show the algorithm MCOS has a better completion time.

c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and
Knowledge in the Internet of Things, 2021.

Keywords: Edge computing; Online scheduling; Dependent task;

1. Introduction

With the development of cloud computing [1, 2], devices with limited computing resources can expand their capa-
bilities by offloading computationally intensive tasks to remote clouds. However, due to the long distance between the
device and the remote cloud, severe communication delays will inevitably occur. The situation is even worse when
large amount of data needs to be transferred. In order to alleviate this problem, edge computing is proposed as a

∗ Corresponding author. Tel.: +86-188-5696-4308.
E-mail address: yuqi.fan@hfut.edu.cn

1877-0509 c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and Knowledge in the
Internet of Things, 2021.

2 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

new cloud computing paradigm [3, 4]. By deploying relatively small-scale edge servers at the edge of the Internet,
edge computing can provide rich computing resources close to the device, which can significantly reduce propagation
delay [5, 6].

Comparing with remote clouds, the resources and the computing power of edge servers are relatively limited [7, 8].
Therefore, multiple edge servers close together often need to cooperate to complete the application. At the same time,
modern applications may contain multiple method components with complex data dependencies, and their dependen-
cies can be constructed into a complex set of relationships. In addition, in edge computing, users go online through
the device and generate requests to run applications. Although these requests run the same application, the amount of
calculation is different due to different input data, so each request can be divided into several computing tasks with
dependencies.In order to ensure the overall service quality of the system, so that each user has a good sense of use, it
is very important to study how to schedule tasks to each server.

Task scheduling under edge computing is a hot research topic. For example, in [9], authors proposed a hierarchical
edge computing shunt framework based on urgent priority, and designed a dynamic priority task scheduling algorithm
named as DPTSA, which can reduce the average delay of system tasks, and reduce the delay of high-priority tasks.
In [10], Considering the limitations of network bandwidth and computing resources, authors proposed an online
algorithm, Dedas, which can greedily schedule newly arrived tasks and consider whether to replace some existing
tasks to meet the new deadline. These works are a good solution to the scheduling of a single task without dependency.
For tasks with dependencies, many researchers currently only consider parallel relationships, so most of them model
the task relationships as directed acyclic graphs (DAG). In [11], authors proposed a novel online algorithm, OnDoc,
to solve the problem of on-demand function configuration and DAG scheduling to meet the request deadline as much
as possible.

For the scheduling of tasks with more complex dependencies, there is a lack of existing researches. By analyzing the
implementation logic of modern applications, we believe that there is still a dependency relationship between priorities
and choices between tasks. In this work, we consider the scheduling of tasks with more complex dependencies in edge
heterogeneous networks. Our goal is to optimize the overall quality of service. That is, we want to minimize the sum
of the completion time for all requests. Our main contributions are as follows:

1) We model tasks with three complex dependencies: sequence, selection and parallel (see Fig. 1).
2) We design a heuristic online scheduling algorithm to minimize the sum of the completion time of all requests as

short as possible.

2. System Model and Problem Definition
Consider a two-dimensional network environment consisted with some edge servers (denote as si, where si ∈ N)

and some devices, see Fig. 1. Suppose each edge server has its own processing speed, and we denote it as fi for si.
All edge servers can communicate with each other directly. Denote bi j as the communication rate between si and s j(if
i = j, bi j = ∞). Suppose devices only have the function for collecting data and transmitting them to edge servers for
handling. Suppose the transmission rate from devices to edge servers are all the same.

Suppose all collected data need to be handled by a same calculating process, and we call the process as the Ap-
plication. Suppose each edge server can execute the whole Application alone, or just execute part of the Application,
and other parts will be executed by other edge servers. That is, the Application is consisted with several method com-
ponents, each method component can be handled independently on an edge server. Some dependency relationships
may exist in these method components, including sequence, selection and parallel (see Fig. 1). When a device tries to
transmit its collected data, it will initiate a request to call the Application on edge servers. Suppose the whole schedul-
ing time can be divided into many time slots τ equally and we normalize τ = 1. Define the time slot set as T . Denote
rk as the request, where rk ∈ R. Different requests may have different collected data sizes which will lead to different
handling times. When different requests are handled by even a same method component, the input and output data
sizes for this method component may also be different. In order to distinguish a method component for these requests,
we call each handled process as a computing task. We define computing task as vi, where vi ∈ V. We assume vstart

as the start computing task, and vend as the end computing task. For each vi, it can run only when it obtains all input
data Ii it needs. Notice that different Ii has different size (which means the number of instructions or the calculation
amount of different vi is different), and the output data Oi will also be different. We define a unique calculation amount
function Fi(Ii) for computing task vi.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.04.022&domain=pdf

 Lei Shi et al. / Procedia Computer Science 202 (2022) 158–163 159

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

International Conference on Identification, Information and Knowledge in the internet of Things,
2021

Online Task Scheduling Algorithm with Complex Dependencies in
Edge Computing

Lei Shia, Zhaoxing Maa, Yuqi Fana, Yi Shib, Xu Dinga, Zhehao Lia
aSchool of Computer Science and Information Engineering, Intelligent Interconnected Systems Laboratory of Anhui Procince, Hefei University of

Technology, Hefei 230009, China
bVirginia Tech, Dept. of ECE, Blacksburg, VA 24061, USA

Abstract

In the edge computing network environment, our applications can be deployed on edge servers. The request to execute the appli-
cation can be produced on the edge device and transmitted to the edge server for calculation. A complex request may be divided
into multiple computing tasks and transmitted to different servers and then parallel calculated before obtaining the final result. How
to schedule computing tasks in multiple requests so that all requests can be completed faster is a difficult problem, especially in
the edge computing environment where we should consider the communicating work and the calculating work simultaneously. In
this paper, we first build a task dependency model of the computing tasks included in the request based on the idea of dividing
the method components of the application. The dependencies include sequence, selection and parallel. Then we propose an online
scheduling algorithm MCOS based on optimizing the task with the maximum amount of calculation to solve the problem of the
minimum sum of the completion time of all requests. In simulations, we show the algorithm MCOS has a better completion time.

c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and
Knowledge in the Internet of Things, 2021.

Keywords: Edge computing; Online scheduling; Dependent task;

1. Introduction

With the development of cloud computing [1, 2], devices with limited computing resources can expand their capa-
bilities by offloading computationally intensive tasks to remote clouds. However, due to the long distance between the
device and the remote cloud, severe communication delays will inevitably occur. The situation is even worse when
large amount of data needs to be transferred. In order to alleviate this problem, edge computing is proposed as a

∗ Corresponding author. Tel.: +86-188-5696-4308.
E-mail address: yuqi.fan@hfut.edu.cn

1877-0509 c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and Knowledge in the
Internet of Things, 2021.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2022) 000–000
www.elsevier.com/locate/procedia

International Conference on Identification, Information and Knowledge in the internet of Things,
2021

Online Task Scheduling Algorithm with Complex Dependencies in
Edge Computing

Lei Shia, Zhaoxing Maa, Yuqi Fana, Yi Shib, Xu Dinga, Zhehao Lia
aSchool of Computer Science and Information Engineering, Intelligent Interconnected Systems Laboratory of Anhui Procince, Hefei University of

Technology, Hefei 230009, China
bVirginia Tech, Dept. of ECE, Blacksburg, VA 24061, USA

Abstract

In the edge computing network environment, our applications can be deployed on edge servers. The request to execute the appli-
cation can be produced on the edge device and transmitted to the edge server for calculation. A complex request may be divided
into multiple computing tasks and transmitted to different servers and then parallel calculated before obtaining the final result. How
to schedule computing tasks in multiple requests so that all requests can be completed faster is a difficult problem, especially in
the edge computing environment where we should consider the communicating work and the calculating work simultaneously. In
this paper, we first build a task dependency model of the computing tasks included in the request based on the idea of dividing
the method components of the application. The dependencies include sequence, selection and parallel. Then we propose an online
scheduling algorithm MCOS based on optimizing the task with the maximum amount of calculation to solve the problem of the
minimum sum of the completion time of all requests. In simulations, we show the algorithm MCOS has a better completion time.

c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and
Knowledge in the Internet of Things, 2021.

Keywords: Edge computing; Online scheduling; Dependent task;

1. Introduction

With the development of cloud computing [1, 2], devices with limited computing resources can expand their capa-
bilities by offloading computationally intensive tasks to remote clouds. However, due to the long distance between the
device and the remote cloud, severe communication delays will inevitably occur. The situation is even worse when
large amount of data needs to be transferred. In order to alleviate this problem, edge computing is proposed as a

∗ Corresponding author. Tel.: +86-188-5696-4308.
E-mail address: yuqi.fan@hfut.edu.cn

1877-0509 c© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Identification, Information and Knowledge in the
Internet of Things, 2021.

2 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

new cloud computing paradigm [3, 4]. By deploying relatively small-scale edge servers at the edge of the Internet,
edge computing can provide rich computing resources close to the device, which can significantly reduce propagation
delay [5, 6].

Comparing with remote clouds, the resources and the computing power of edge servers are relatively limited [7, 8].
Therefore, multiple edge servers close together often need to cooperate to complete the application. At the same time,
modern applications may contain multiple method components with complex data dependencies, and their dependen-
cies can be constructed into a complex set of relationships. In addition, in edge computing, users go online through
the device and generate requests to run applications. Although these requests run the same application, the amount of
calculation is different due to different input data, so each request can be divided into several computing tasks with
dependencies.In order to ensure the overall service quality of the system, so that each user has a good sense of use, it
is very important to study how to schedule tasks to each server.

Task scheduling under edge computing is a hot research topic. For example, in [9], authors proposed a hierarchical
edge computing shunt framework based on urgent priority, and designed a dynamic priority task scheduling algorithm
named as DPTSA, which can reduce the average delay of system tasks, and reduce the delay of high-priority tasks.
In [10], Considering the limitations of network bandwidth and computing resources, authors proposed an online
algorithm, Dedas, which can greedily schedule newly arrived tasks and consider whether to replace some existing
tasks to meet the new deadline. These works are a good solution to the scheduling of a single task without dependency.
For tasks with dependencies, many researchers currently only consider parallel relationships, so most of them model
the task relationships as directed acyclic graphs (DAG). In [11], authors proposed a novel online algorithm, OnDoc,
to solve the problem of on-demand function configuration and DAG scheduling to meet the request deadline as much
as possible.

For the scheduling of tasks with more complex dependencies, there is a lack of existing researches. By analyzing the
implementation logic of modern applications, we believe that there is still a dependency relationship between priorities
and choices between tasks. In this work, we consider the scheduling of tasks with more complex dependencies in edge
heterogeneous networks. Our goal is to optimize the overall quality of service. That is, we want to minimize the sum
of the completion time for all requests. Our main contributions are as follows:

1) We model tasks with three complex dependencies: sequence, selection and parallel (see Fig. 1).
2) We design a heuristic online scheduling algorithm to minimize the sum of the completion time of all requests as

short as possible.

2. System Model and Problem Definition
Consider a two-dimensional network environment consisted with some edge servers (denote as si, where si ∈ N)

and some devices, see Fig. 1. Suppose each edge server has its own processing speed, and we denote it as fi for si.
All edge servers can communicate with each other directly. Denote bi j as the communication rate between si and s j(if
i = j, bi j = ∞). Suppose devices only have the function for collecting data and transmitting them to edge servers for
handling. Suppose the transmission rate from devices to edge servers are all the same.

Suppose all collected data need to be handled by a same calculating process, and we call the process as the Ap-
plication. Suppose each edge server can execute the whole Application alone, or just execute part of the Application,
and other parts will be executed by other edge servers. That is, the Application is consisted with several method com-
ponents, each method component can be handled independently on an edge server. Some dependency relationships
may exist in these method components, including sequence, selection and parallel (see Fig. 1). When a device tries to
transmit its collected data, it will initiate a request to call the Application on edge servers. Suppose the whole schedul-
ing time can be divided into many time slots τ equally and we normalize τ = 1. Define the time slot set as T . Denote
rk as the request, where rk ∈ R. Different requests may have different collected data sizes which will lead to different
handling times. When different requests are handled by even a same method component, the input and output data
sizes for this method component may also be different. In order to distinguish a method component for these requests,
we call each handled process as a computing task. We define computing task as vi, where vi ∈ V. We assume vstart

as the start computing task, and vend as the end computing task. For each vi, it can run only when it obtains all input
data Ii it needs. Notice that different Ii has different size (which means the number of instructions or the calculation
amount of different vi is different), and the output data Oi will also be different. We define a unique calculation amount
function Fi(Ii) for computing task vi.

160 Lei Shi et al. / Procedia Computer Science 202 (2022) 158–163Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000 3

Fig. 1. System Model Fig. 2. Total completion time under different number of requests

To sum it up, in our system model, we have many requests with different input data needed to be handled by a same
Application. The Application can be divided into many method components and be executed in different edge servers.
These method components may have some dependency relationships. And we call a method component for a special
request as a computing task. We want to give a scheduling strategy to minimize the sum of the completion times for
all requests.
2.1. Task Dependency Model

Define yk,i(t) as the state of computing task vi(∈ rk) at the t-th time slot, we have

yk,i(t) =
{

1, computing task vi(∈ rk) is executed at t time slot or (t = 0);
0, otherwise. (1)

Now we discuss the expression of the three dependencies.
In Fig. 1(a), v j points to vi, which means v j must be executed before vi. We call this relationship as sequence.

In Fig. 1(b), vi can be executed only by obtaining one of the output data from task v j or from task v j′ . We call this
relationship as selection. In Fig. 1(c), vi must obtain all output data from task v j and v j′ before it can be executed. We
call this relationship as parallel. Expressed as follows:

t − t′ ≥ 1
(yk,i(t) = 1) ∧ (yk, j(t′) = 1)

(t � 0) ∧ (t′ � 0)
vi, v j ∈ rk.

;

t − (t′ + t′′) ≥ 1
(yk,i(t) = 1) ∧ ((yk, j(t′) = 1) ∨ (yk, j′ (t′′) = 1))

(t � 0) ∧ ((t′ � 0) ∨ (t′′ � 0))
v j, v j′ , vi ∈ rk.

;

t −max{t′, t′′} ≥ 1
(yk,i(t) = 1) ∧ (yk, j(t′) = 1) ∧ (yk, j′ (t′′) = 1)

(t � 0) ∧ (t′ � 0) ∧ (t′′ � 0)
v j, v j′ , vi ∈ rk.

.

Define Yk as the set of all these relationship constraints belonging to a request rk.
2.2. Problem Definition

Define xk,i(p) to show whether task vi(∈ rk) is handled on the edge server sp. We have

xk,i(p) =
{

1, computing task vi(∈ rk) runs on edge server sp;
0, otherwise. (2)

Each computing task can only be assigned to one server, so we have∑
p∈N

xk,i(p) ≤ 1. (3)

If
∑

p∈N xk,i(p) = 0, it means task vi will not run.
We use τk,i,p to represent the time length for executing task vi(∈ rk) on edge server sp. For a task vi, the total value

of τ is composed with three part. One, the time for receiving data of its previous tasks from the previous edge server.
We Denote it as τres

k,i,p. if the previous server and the received server are the same, this value will be zero. Two, the
time for waiting to be executed on the received server. We denote it as τwat

k,i,p. Three, the time for executing the task.
We denote it as τexe

k,i,p. We have

τk,i,p = τ
res
k,i,p + τ

wat
k,i,p + τ

exe
k,i,p. (4)

In the following we will discuss these three parts separately. Since the time for waiting is the most complex part,
we will discuss it at last. We have:

4 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

a. Receiving data of the previous tasks. Denote τres
k,i,p as the time length for receiving the input data of vi(∈ rk) on the

edge server sp. For the sequence dependency, we have τres
k,i,p = xk,i(p)

∑
p′∈N
(
xk, j(p′) Oj

bp′ p

)
, where Oj is the output data

size for v j, bp′p is the communication rate between sp and sp′ . The selection dependency can also be expressed as se-

quence. For the parallel dependency, we have τres
k,i,p = max

{
xk,i(p)

∑
p′∈N
(
xk, j(p′) Oj

bp′ p

)
, xk,i(p)

∑
p′′∈N
(
xk, j′ (p′′)

O′j
bp′′ p

)}
.

b. Task execution. Denote τexe
k,i,p as the time length for executing task vi(∈ rk) on the edge server sp. We have

τexe
k,i,p = xk,i(p) Fi(Ii)

fp
.

c. Waiting for execution. Denote τwat
k,i,p as the time length for waiting to execute task vi(∈ rk) on the edge server

sp. τwat
k,i,p is from the time slot where the received data has reached the edge server totally to the time slot where the

execution is started. Since we know for task vi, t is the start time slot when yk,i(t) = 1 and t � 0, so if we can represent
the time slot for receiving, then we can represent τwat

k,i,p. Notice that the time slot for receiving can be calculated by two
elements. One, the time slot for starting the execution of the previous tasks. Two, the time length for executing the
previous tasks and the time length for transmitting the input data for vi. Based on these, we have

Sequence:

τwat
k,i,p = xk,i(p)(t − t′ − τexe

k, j,p′ − τres
k,i,p)

(yk,i(t) = 1) ∧ (yk, j(t′) = 1)
(t � 0) ∧ (t′ � 0)

vi, v j ∈ rk.

; Selection:

τwat
k,i,p = xk,i(p)(t − (t′ + t′′) − (τexe

k, j,p′ + τ
exe
k, j′,p′′) − τres

k,i,p)
(yk,i(t) = 1) ∧ ((yk, j(t′) = 1) ∨ (yk, j′ (t′′) = 1))

(t � 0) ∧ ((t′ � 0) ∨ (t′′ � 0))
v j, v j′ , vi ∈ rk.

;

Parallel:

τwat
k,i,p = max

{
xk,i(p)(t − t′ − τexe

k, j,p′ − τres
k,i,p), xk,i(p)(t − t′′ − τexe

k, j,p′′ − τres
k,i,p)
}

(yk,i(t) = 1) ∧ (yk, j(t′) = 1) ∧ (yk, j′ (t′′) = 1)
(t � 0) ∧ (t′ � 0) ∧ (t′′ � 0)

v j, v j′ , vi ∈ rk.

.

We know that each request rk has only one start task vstart and one end task vend. We denote their executed time slot
as tstart and tend, respectively. Our optimization goal is to minimize the sum of the completion time of all requests.

min :
∑

k∈|R|(tend − tstart + τ
exe
k,end,p)

s.t. yk,start(tstart) = 1 vstart ∈ rk

yk,end(tend) = 1 and tk,end � 0 vend ∈ rk

τwat
k,end,p ≥ 0

(5)

3. Algorithms
We describe the details of our algorithm in this section. Through the description of the system model, we know that

the arrival time and initial data volume of each request are different, which makes the difference between all computing
tasks. Therefore, it is difficult for us to uniformly allocate some tasks as a class of tasks. The manifestation of this
difference is the impact of the amount of input data on the amount of calculation of the task. Therefore, the design
of our algorithm part mainly focuses on the analysis and construction of the amount of calculation of the task. We
propose an online task scheduling algorithm based on the maximum amount of calculation(MCOS), which is divided
into three parts. We first construct the priority between the computing tasks included in a single request by simplifying
the task dependency model in sub section 3.1. Then in sub section 3.2, we design an algorithm to distribute computing
tasks to edge servers. Finally, we give the edge server queue optimization algorithm in sub section 3.3.

3.1. Streamlined Task Dependency Model

The calculation amount of a single calculation task is affected by the amount of input data and is computable. So
when the initial amount of data for a request is determined, we can in principle calculate the amount of calculation for
all tasks. However, due to the selected task dependency, there are many possibilities for the calculation of subsequent
tasks. Therefore, when a request arrives, we streamline the selected task dependency based on its initial data volume.
The principle of simplification is to select the computing task that minimizes the calculation amount of the entire
request. We use lk to represent the list of computing tasks to be run after request rk has been streamlined. We define all
lists as set Q, where lk ∈ Q. At the same time, the total amount of calculation for a single request is also an important
factor for us to assess the priority between requests. This will be reflected in the algorithm design section below.

 Lei Shi et al. / Procedia Computer Science 202 (2022) 158–163 161Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000 3

Fig. 1. System Model Fig. 2. Total completion time under different number of requests

To sum it up, in our system model, we have many requests with different input data needed to be handled by a same
Application. The Application can be divided into many method components and be executed in different edge servers.
These method components may have some dependency relationships. And we call a method component for a special
request as a computing task. We want to give a scheduling strategy to minimize the sum of the completion times for
all requests.
2.1. Task Dependency Model

Define yk,i(t) as the state of computing task vi(∈ rk) at the t-th time slot, we have

yk,i(t) =
{

1, computing task vi(∈ rk) is executed at t time slot or (t = 0);
0, otherwise. (1)

Now we discuss the expression of the three dependencies.
In Fig. 1(a), v j points to vi, which means v j must be executed before vi. We call this relationship as sequence.

In Fig. 1(b), vi can be executed only by obtaining one of the output data from task v j or from task v j′ . We call this
relationship as selection. In Fig. 1(c), vi must obtain all output data from task v j and v j′ before it can be executed. We
call this relationship as parallel. Expressed as follows:

t − t′ ≥ 1
(yk,i(t) = 1) ∧ (yk, j(t′) = 1)

(t � 0) ∧ (t′ � 0)
vi, v j ∈ rk.

;

t − (t′ + t′′) ≥ 1
(yk,i(t) = 1) ∧ ((yk, j(t′) = 1) ∨ (yk, j′ (t′′) = 1))

(t � 0) ∧ ((t′ � 0) ∨ (t′′ � 0))
v j, v j′ , vi ∈ rk.

;

t −max{t′, t′′} ≥ 1
(yk,i(t) = 1) ∧ (yk, j(t′) = 1) ∧ (yk, j′ (t′′) = 1)

(t � 0) ∧ (t′ � 0) ∧ (t′′ � 0)
v j, v j′ , vi ∈ rk.

.

Define Yk as the set of all these relationship constraints belonging to a request rk.
2.2. Problem Definition

Define xk,i(p) to show whether task vi(∈ rk) is handled on the edge server sp. We have

xk,i(p) =
{

1, computing task vi(∈ rk) runs on edge server sp;
0, otherwise. (2)

Each computing task can only be assigned to one server, so we have∑
p∈N

xk,i(p) ≤ 1. (3)

If
∑

p∈N xk,i(p) = 0, it means task vi will not run.
We use τk,i,p to represent the time length for executing task vi(∈ rk) on edge server sp. For a task vi, the total value

of τ is composed with three part. One, the time for receiving data of its previous tasks from the previous edge server.
We Denote it as τres

k,i,p. if the previous server and the received server are the same, this value will be zero. Two, the
time for waiting to be executed on the received server. We denote it as τwat

k,i,p. Three, the time for executing the task.
We denote it as τexe

k,i,p. We have

τk,i,p = τ
res
k,i,p + τ

wat
k,i,p + τ

exe
k,i,p. (4)

In the following we will discuss these three parts separately. Since the time for waiting is the most complex part,
we will discuss it at last. We have:

4 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

a. Receiving data of the previous tasks. Denote τres
k,i,p as the time length for receiving the input data of vi(∈ rk) on the

edge server sp. For the sequence dependency, we have τres
k,i,p = xk,i(p)

∑
p′∈N
(
xk, j(p′) Oj

bp′ p

)
, where Oj is the output data

size for v j, bp′p is the communication rate between sp and sp′ . The selection dependency can also be expressed as se-

quence. For the parallel dependency, we have τres
k,i,p = max

{
xk,i(p)

∑
p′∈N
(
xk, j(p′) Oj

bp′ p

)
, xk,i(p)

∑
p′′∈N
(
xk, j′ (p′′)

O′j
bp′′ p

)}
.

b. Task execution. Denote τexe
k,i,p as the time length for executing task vi(∈ rk) on the edge server sp. We have

τexe
k,i,p = xk,i(p) Fi(Ii)

fp
.

c. Waiting for execution. Denote τwat
k,i,p as the time length for waiting to execute task vi(∈ rk) on the edge server

sp. τwat
k,i,p is from the time slot where the received data has reached the edge server totally to the time slot where the

execution is started. Since we know for task vi, t is the start time slot when yk,i(t) = 1 and t � 0, so if we can represent
the time slot for receiving, then we can represent τwat

k,i,p. Notice that the time slot for receiving can be calculated by two
elements. One, the time slot for starting the execution of the previous tasks. Two, the time length for executing the
previous tasks and the time length for transmitting the input data for vi. Based on these, we have

Sequence:

τwat
k,i,p = xk,i(p)(t − t′ − τexe

k, j,p′ − τres
k,i,p)

(yk,i(t) = 1) ∧ (yk, j(t′) = 1)
(t � 0) ∧ (t′ � 0)

vi, v j ∈ rk.

; Selection:

τwat
k,i,p = xk,i(p)(t − (t′ + t′′) − (τexe

k, j,p′ + τ
exe
k, j′,p′′) − τres

k,i,p)
(yk,i(t) = 1) ∧ ((yk, j(t′) = 1) ∨ (yk, j′ (t′′) = 1))

(t � 0) ∧ ((t′ � 0) ∨ (t′′ � 0))
v j, v j′ , vi ∈ rk.

;

Parallel:

τwat
k,i,p = max

{
xk,i(p)(t − t′ − τexe

k, j,p′ − τres
k,i,p), xk,i(p)(t − t′′ − τexe

k, j,p′′ − τres
k,i,p)
}

(yk,i(t) = 1) ∧ (yk, j(t′) = 1) ∧ (yk, j′ (t′′) = 1)
(t � 0) ∧ (t′ � 0) ∧ (t′′ � 0)

v j, v j′ , vi ∈ rk.

.

We know that each request rk has only one start task vstart and one end task vend. We denote their executed time slot
as tstart and tend, respectively. Our optimization goal is to minimize the sum of the completion time of all requests.

min :
∑

k∈|R|(tend − tstart + τ
exe
k,end,p)

s.t. yk,start(tstart) = 1 vstart ∈ rk

yk,end(tend) = 1 and tk,end � 0 vend ∈ rk

τwat
k,end,p ≥ 0

(5)

3. Algorithms
We describe the details of our algorithm in this section. Through the description of the system model, we know that

the arrival time and initial data volume of each request are different, which makes the difference between all computing
tasks. Therefore, it is difficult for us to uniformly allocate some tasks as a class of tasks. The manifestation of this
difference is the impact of the amount of input data on the amount of calculation of the task. Therefore, the design
of our algorithm part mainly focuses on the analysis and construction of the amount of calculation of the task. We
propose an online task scheduling algorithm based on the maximum amount of calculation(MCOS), which is divided
into three parts. We first construct the priority between the computing tasks included in a single request by simplifying
the task dependency model in sub section 3.1. Then in sub section 3.2, we design an algorithm to distribute computing
tasks to edge servers. Finally, we give the edge server queue optimization algorithm in sub section 3.3.

3.1. Streamlined Task Dependency Model

The calculation amount of a single calculation task is affected by the amount of input data and is computable. So
when the initial amount of data for a request is determined, we can in principle calculate the amount of calculation for
all tasks. However, due to the selected task dependency, there are many possibilities for the calculation of subsequent
tasks. Therefore, when a request arrives, we streamline the selected task dependency based on its initial data volume.
The principle of simplification is to select the computing task that minimizes the calculation amount of the entire
request. We use lk to represent the list of computing tasks to be run after request rk has been streamlined. We define all
lists as set Q, where lk ∈ Q. At the same time, the total amount of calculation for a single request is also an important
factor for us to assess the priority between requests. This will be reflected in the algorithm design section below.

162 Lei Shi et al. / Procedia Computer Science 202 (2022) 158–163
Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000 5

3.2. Computing Task Dispatch

In this part, we will propose an algorithm to select the appropriate edge server for dispatch for each computing
task. By analyzing our system model, we can obtain the current queue of each edge server and complete the time
slot sequence number of the current queue. This allows us to remove some non-compliant edge servers, and for the
remaining candidate edge servers, we choose the one that makes the calculation task complete the earliest. The specific
algorithm design is shown in Algorithm 1, with the following detailed steps:

Step 1: We first judge whether there is a new request coming. If a new request rk comes, we will streamline it
according to the streamlining principle and build a computing task list lk. Then add the list lk to set Q.(Line 3-6)

Step 2: According to the set Q, we can know the completion progress of each request in the current time slot, and
we can construct a computing task queue H to be dispatched under the current time slot. Then, we sort the queue H
according to the calculation amount of the computing task from large to small.(Line 7-8)

Step 3: For each computing task to be dispatched, we construct a set of selectable edge servers Nk,i according to
the current network situation. If the current task queue completion time slot number of an edge server is less than the
average transmission time 1

|N|
∑

p∈N τ
res
k,i,p of the current task to be dispatched, it can be added to the set Nk,i. If there is

no edge server that meets the requirements, select the two edge servers with the earliest completion time. Then select
the edge server sp ∈ Nk,i to minimize the current computing task completion time τk,i,p for dispatch.(Line 9-20)

Algorithm 1 Computing Task Dispatch Algorithm
Input: Initializing N ,M, b, B,V, Y, R;
1: set Q← ∅;
2: for each time slot in T do
3: if new request rk arrives then
4: lk ← Build a computing task list form rk ;
5: Q← Q ∪ {lk};
6: end if
7: Construct queue H according to the set Q ;
8: Sort queue H according to the calculation amount of the computing task from large to small;
9: for each computing task(vi ∈ rk) in H do

10: set Nk,i ← ∅;
11: for each edge server sp ∈ N do
12: if completion time of sp <

1
|N|
∑

p∈N τ
res
k,i,p then

13: Nk,i ← Nk,i ∪
{
sp

}
;

14: end if
15: end for
16: if Nk,i is ∅ then
17: Select two edge servers with the earliest completion time and add them to Nk,i;
18: end if
19: Select the edge server sp ∈ Nk,i to minimize τk,i,p for dispatch;
20: end for
21: end for

Algorithm 2 Computing Task Queue Optimization Algorithm
Input: Algorithm 1 dispatch result;
1: for each time slot in T do
2: if new computing task vi ∈ rk is dispatched to edge server sp then
3: Construct the task queue qsp of the edge server sp;
4: for each computing task vi′ ∈ rk′ in qsp do
5: if calculation amount of rk is greater than rk′ then
6: Move the computing task vi ∈ rk before vi′ ∈ rk′ ;
7: end if
8: end for
9: end if

10: end for

3.3. Computing Task Queue Optimization

Through Algorithm 1, we dispatched each computing task to a suitable edge server, which is in line with our
optimization goal. After further analysis, we can know that the total amount of calculation for different requests
is different. Obviously, the faster the request with a large amount of total calculation is completed, the more our
optimization goal is met. On this basis, we propose a computational task queue optimization algorithm. The specific
algorithm design is shown in Algorithm 2, with the following detailed steps:

Step 1: When a new computing task vi ∈ rk is dispatched to the edge server sp through algorithm 1, we first
construct a computing task queue qsp of the current server sp to be run.(Line 3)

6 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

Step 2: Then we compare the calculation amount of the request rk to which the computing task vi belongs to
the calculation amount of the request to which the calculation task belongs in the queue p. Then we compare the
calculation amount including the computing task vi request rk and the calculation amount of the request belonging
to the computing task in the queue qsp . If the calculation amount of a certain request rk is larger, move vi before the
computing task.(Line 4-7)

4. Simulation
In this section, we will present the simulation results. We first constructed an application composed of some method

components. Then we specify the size of our single time slot τ as 10 ms. On this basis, we set up the network
environment. We set the number of our edge servers to five, and the processing speed of each edge server is different,
and the value ranges from 4 to 8 GHz. The communication rate between any two edge servers is from 1 to 5 MB/s. For
each request, we set its initial data size between 500 and 1000 KB, and the time to reach the edge network is random.
We will compare our algorithm with the two baselines by changing the number of requests. Due to the lack of research
on the assignment of the three dependency tasks we described, we take two typical algorithms as our baselines. Local
Heuristic (Local): When a request reaches its initial receiving server, all computing tasks of this request will be run
on this edge server. First-Come-First-Serve (FCFS): FCFS is a popular scheduling policy which is commonly used
by the methods based on queuing theory [12].

We use the arrival time of the request as the queuing order, and the next request will be allocated after all the
computing tasks of a request have been allocated. We first randomize the processing speed of five edge servers and the
communication rate between them. Then we use 20 requests as an incremental basis set, and randomly get their initial
data volume and arrival time, and then compare the completion times of the three algorithms, the result is shown in
Figure. 2. Since the number of our edge servers is 5, the pros and cons of the three algorithms are not obvious when
the number of requests is 20. But as the number of requests increases, our algorithm MCOS is always the lowest in
the sum of the completion time. And the gap with the other two algorithms is gradually increasing.

5. Conclusion
In this work, we study how an edge server network that deploys applications with sequence, selective, and parallel

relationships can schedule random online requests with different initial data. We constructed a general model for
this problem to minimize the completion time of all requests. We give an online task scheduling algorithm MCOS,
which is the first algorithm used to solve online scheduling applications with sequence, selective and parallel relations.
Compared with the two baseline algorithms, MCOS has a better completion time.
References

[1] B. Chun, Sunghwan Ihm, Petros Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution between mobile device and cloud. In EuroSys
’11, 2011.

[2] Yangming Zhao, Xin Liu, and C. Qiao. Job scheduling for acceleration systems in cloud computing. 2018 IEEE International Conference on
Communications (ICC), pages 1–6, 2018.

[3] P. López, A. Montresor, D. Epema, Anwitaman Datta, T. Higashino, A. Iamnitchi, Marinho P. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: Vision and challenges. Comput. Commun. Rev., 45:37–42, 2015.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.
[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge computing: The communication perspective. IEEE

Communications Surveys Tutorials, 19(4):2322–2358, 2017.
[7] J. Ren, G. Yu, Y. Cai, and Y. He. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on

Wireless Communications, 17(8):5506–5519, 2018.
[8] C. You, K. Huang, H. Chae, and B. Kim. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on

Wireless Communications, 16(3):1397–1411, 2017.
[9] J. X. Liao and X. W. Wu. Resource allocation and task scheduling scheme in priority-based hierarchical edge computing system. In 2020 19th

International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pages 46–49, 2020.
[10] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li. Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing.

In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages 2287–2295, 2019.
[11] Liuyan Liu, Haoqiang Huang, Haisheng Tan, Wanli Cao, Panlong Yang, and Xiang-Yang Li. Online dag scheduling with on-demand func-

tion configuration in edge computing. In Edoardo S. Biagioni, Yao Zheng, and Siyao Cheng, editors, Wireless Algorithms, Systems, and
Applications, pages 213–224, Cham, 2019. Springer International Publishing.

[12] Haisheng Tan, Zhenhua Han, X. Li, and F. Lau. Online job dispatching and scheduling in edge-clouds. IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, pages 1–9, 2017.

 Lei Shi et al. / Procedia Computer Science 202 (2022) 158–163 163
Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000 5

3.2. Computing Task Dispatch

In this part, we will propose an algorithm to select the appropriate edge server for dispatch for each computing
task. By analyzing our system model, we can obtain the current queue of each edge server and complete the time
slot sequence number of the current queue. This allows us to remove some non-compliant edge servers, and for the
remaining candidate edge servers, we choose the one that makes the calculation task complete the earliest. The specific
algorithm design is shown in Algorithm 1, with the following detailed steps:

Step 1: We first judge whether there is a new request coming. If a new request rk comes, we will streamline it
according to the streamlining principle and build a computing task list lk. Then add the list lk to set Q.(Line 3-6)

Step 2: According to the set Q, we can know the completion progress of each request in the current time slot, and
we can construct a computing task queue H to be dispatched under the current time slot. Then, we sort the queue H
according to the calculation amount of the computing task from large to small.(Line 7-8)

Step 3: For each computing task to be dispatched, we construct a set of selectable edge servers Nk,i according to
the current network situation. If the current task queue completion time slot number of an edge server is less than the
average transmission time 1

|N|
∑

p∈N τ
res
k,i,p of the current task to be dispatched, it can be added to the set Nk,i. If there is

no edge server that meets the requirements, select the two edge servers with the earliest completion time. Then select
the edge server sp ∈ Nk,i to minimize the current computing task completion time τk,i,p for dispatch.(Line 9-20)

Algorithm 1 Computing Task Dispatch Algorithm
Input: Initializing N ,M, b, B,V, Y, R;
1: set Q← ∅;
2: for each time slot in T do
3: if new request rk arrives then
4: lk ← Build a computing task list form rk ;
5: Q← Q ∪ {lk};
6: end if
7: Construct queue H according to the set Q ;
8: Sort queue H according to the calculation amount of the computing task from large to small;
9: for each computing task(vi ∈ rk) in H do

10: set Nk,i ← ∅;
11: for each edge server sp ∈ N do
12: if completion time of sp <

1
|N|
∑

p∈N τ
res
k,i,p then

13: Nk,i ← Nk,i ∪
{
sp

}
;

14: end if
15: end for
16: if Nk,i is ∅ then
17: Select two edge servers with the earliest completion time and add them to Nk,i;
18: end if
19: Select the edge server sp ∈ Nk,i to minimize τk,i,p for dispatch;
20: end for
21: end for

Algorithm 2 Computing Task Queue Optimization Algorithm
Input: Algorithm 1 dispatch result;
1: for each time slot in T do
2: if new computing task vi ∈ rk is dispatched to edge server sp then
3: Construct the task queue qsp of the edge server sp;
4: for each computing task vi′ ∈ rk′ in qsp do
5: if calculation amount of rk is greater than rk′ then
6: Move the computing task vi ∈ rk before vi′ ∈ rk′ ;
7: end if
8: end for
9: end if

10: end for

3.3. Computing Task Queue Optimization

Through Algorithm 1, we dispatched each computing task to a suitable edge server, which is in line with our
optimization goal. After further analysis, we can know that the total amount of calculation for different requests
is different. Obviously, the faster the request with a large amount of total calculation is completed, the more our
optimization goal is met. On this basis, we propose a computational task queue optimization algorithm. The specific
algorithm design is shown in Algorithm 2, with the following detailed steps:

Step 1: When a new computing task vi ∈ rk is dispatched to the edge server sp through algorithm 1, we first
construct a computing task queue qsp of the current server sp to be run.(Line 3)

6 Lei Sh, et al. / Procedia Computer Science 00 (2022) 000–000

Step 2: Then we compare the calculation amount of the request rk to which the computing task vi belongs to
the calculation amount of the request to which the calculation task belongs in the queue p. Then we compare the
calculation amount including the computing task vi request rk and the calculation amount of the request belonging
to the computing task in the queue qsp . If the calculation amount of a certain request rk is larger, move vi before the
computing task.(Line 4-7)

4. Simulation
In this section, we will present the simulation results. We first constructed an application composed of some method

components. Then we specify the size of our single time slot τ as 10 ms. On this basis, we set up the network
environment. We set the number of our edge servers to five, and the processing speed of each edge server is different,
and the value ranges from 4 to 8 GHz. The communication rate between any two edge servers is from 1 to 5 MB/s. For
each request, we set its initial data size between 500 and 1000 KB, and the time to reach the edge network is random.
We will compare our algorithm with the two baselines by changing the number of requests. Due to the lack of research
on the assignment of the three dependency tasks we described, we take two typical algorithms as our baselines. Local
Heuristic (Local): When a request reaches its initial receiving server, all computing tasks of this request will be run
on this edge server. First-Come-First-Serve (FCFS): FCFS is a popular scheduling policy which is commonly used
by the methods based on queuing theory [12].

We use the arrival time of the request as the queuing order, and the next request will be allocated after all the
computing tasks of a request have been allocated. We first randomize the processing speed of five edge servers and the
communication rate between them. Then we use 20 requests as an incremental basis set, and randomly get their initial
data volume and arrival time, and then compare the completion times of the three algorithms, the result is shown in
Figure. 2. Since the number of our edge servers is 5, the pros and cons of the three algorithms are not obvious when
the number of requests is 20. But as the number of requests increases, our algorithm MCOS is always the lowest in
the sum of the completion time. And the gap with the other two algorithms is gradually increasing.

5. Conclusion
In this work, we study how an edge server network that deploys applications with sequence, selective, and parallel

relationships can schedule random online requests with different initial data. We constructed a general model for
this problem to minimize the completion time of all requests. We give an online task scheduling algorithm MCOS,
which is the first algorithm used to solve online scheduling applications with sequence, selective and parallel relations.
Compared with the two baseline algorithms, MCOS has a better completion time.
References

[1] B. Chun, Sunghwan Ihm, Petros Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution between mobile device and cloud. In EuroSys
’11, 2011.

[2] Yangming Zhao, Xin Liu, and C. Qiao. Job scheduling for acceleration systems in cloud computing. 2018 IEEE International Conference on
Communications (ICC), pages 1–6, 2018.

[3] P. López, A. Montresor, D. Epema, Anwitaman Datta, T. Higashino, A. Iamnitchi, Marinho P. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: Vision and challenges. Comput. Commun. Rev., 45:37–42, 2015.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.
[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge computing: The communication perspective. IEEE

Communications Surveys Tutorials, 19(4):2322–2358, 2017.
[7] J. Ren, G. Yu, Y. Cai, and Y. He. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on

Wireless Communications, 17(8):5506–5519, 2018.
[8] C. You, K. Huang, H. Chae, and B. Kim. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on

Wireless Communications, 16(3):1397–1411, 2017.
[9] J. X. Liao and X. W. Wu. Resource allocation and task scheduling scheme in priority-based hierarchical edge computing system. In 2020 19th

International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pages 46–49, 2020.
[10] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li. Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing.

In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages 2287–2295, 2019.
[11] Liuyan Liu, Haoqiang Huang, Haisheng Tan, Wanli Cao, Panlong Yang, and Xiang-Yang Li. Online dag scheduling with on-demand func-

tion configuration in edge computing. In Edoardo S. Biagioni, Yao Zheng, and Siyao Cheng, editors, Wireless Algorithms, Systems, and
Applications, pages 213–224, Cham, 2019. Springer International Publishing.

[12] Haisheng Tan, Zhenhua Han, X. Li, and F. Lau. Online job dispatching and scheduling in edge-clouds. IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, pages 1–9, 2017.

