
Synchronous Federated Learning Latency
Optimization Based on Model Splitting

Chen Fang1,3, Lei Shi1,3(B), Yi Shi2, Jing Xu1,3, and Xu Ding1,3

1 School of Computer Science and Information Engineering, Hefei University
of Technology, Hefei 230009, China

shilei@hfut.edu.cn
2 Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA

3 Engineering Research Center of Safety Critical Industrial Measurement and

Control Technology, Ministry of Education, Hefei 230009, China

Abstract. Federated Learning (FL) is a distributed machine learning
approach which is suitable for edge computing environment. While in
this environment, how to take full advantage of the computing resources
on end devices and edge servers is still a difficult problem. Especially for
the synchronous federated learning, computing resources among different
participants will lead to extra time cost and cause resource waste. In this
paper, we try to reduce the time cost and the computing resource waste
by using model splitting and task scheduling. We first establish the math-
ematical model and find it can not be solved directly. Then we design our
algorithm which we name as the Federated Learning Offloading Accel-
eration (FLOA) algorithm to obtain a sub-optimal solution. The FLOA
algorithm first uses the Partition Points Selection method to reduce the
size of the solution space, then proposes a task offloading method based
on matching theory. Experiments and simulations show that compared to
the other three calculation methods, the single iteration time is reduced
by 47%, 28%, 14% under our algorithm in turn.

Keywords: Edge computing · Federated learning · Model splitting

1 Introduction

With the development and popularity of AI applications, it has become a trend
for deploying AI applications on smart devices. The key to the deployment of
AI applications is to use the rich data distributed on smart devices for training
AI models. The data on smart devices contains a large amount of the user’s
privacy [1,2]. Traditional cloud computing requires these data on devices to be
transferred to the cloud centre, which will lead a large communication burden

The Work is Supported by Major Science and Technology Projects in Anhui Province
(202003a05020009).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 495–506, 2022.
https://doi.org/10.1007/978-3-031-19211-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_41&domain=pdf
https://doi.org/10.1007/978-3-031-19211-1_41

496 C. Fang et al.

and threat the data privacy. To solve these problems, some scholars are trying
to combine edge computing and Federated Learning (FL) to train AI models [3].

Edge computing refers to the enabling technologies allowing computation to
be performed at the edge of the network and is much efficient to process the data
at the edge of the network [4]. For example, in [5] and [6], authors use computing
resources from end devices and edge servers to process data. FL is a distributed
machine learning approach suitable for edge computing [7]. In FL, participants
collaborate with each other to train a shared DNN model together by using
their own local data without sharing them [8,9]. In detail, each participant first
trains a shared DNN model by using its local private data, and then uploads
the model parameters to the parameter server for aggregation to obtain a global
model. This process can be iterated several times until the trained model achieves
the desired accuracy. FL has two different types of iterations, synchronous and
asynchronous. The synchronous one means that model aggregation occurs after
all participants complete local computation [10].

There are already some researches on combining edge computing with FL.
In [11], a multi-layer federated learning protocol called HybridFL is designed for
the Mobile Edge Computing (MEC) architecture, HybridFL improves the FL
training process significantly in terms of shortening the federated round length,
speeding up the global model’s convergence and reducing end device energy con-
sumption. [12] proposes a new FL-based client selection optimization to balance
the trade-off between energy consumption of the edge clients and the learning
accuracy of FL. [13] introduces a novel Hierarchical Federated Edge Learning
(HFEL) framework, further formulate a joint computation and communication
resource allocation and edge association problem for device users under HFEL
framework to achieve global cost minimization.

In addition, model splitting can also accelerate the training process while
protecting data privacy [14]. By using model splitting technique, A DNN model
can be split inside between two successive layers into two partitions and then
be deployed on different locations without losing accuracy [15]. [16] uses model
splitting in FL to protect data privacy by placing the first layer of the DNN
model on the end device, so there is no need to transmit sample data.

Previous work has made some contributions in combining edge computing
and FL. However, they mostly focus on improvements to FL framework or aggre-
gation protocols, and few researches use model splitting in federated learning to
reduce latency. They do not take full advantage of the computing resources of end
devices and edge servers in edge computing. In addition, they also ignore the time
cost and resource waste in synchronous FL caused by the difference in computing
resources of end devices. In this paper, we make full use of computing resources
in edge computing environment through model splitting and task scheduling,
which reduces the time cost of synchronous federated learning. First, we build a
mathematical model for federated learning under end-to-edge collaborative edge
computing. Edge computing scenario is complex and the mathematical model
is difficult to solve directly because of the many variables. We first reduce the
size of the solution space by filtering the split points, and Federated Learning

Synchronous Federated Learning Latency Optimization 497

Fig. 1. System model.

Offloading Acceleration (FLOA) algorithm is designed based on matching theory
to solve for the mathematical model.

The rest of this paper is organized as follows: In Sect. 2, we introduce system
model and define our problem. In Sect. 3, we introduce the matching theory and
the details of FLOA algorithm respectively. In Sect. 4, we give the simulation
results and analyze them. In Sect. 5, we summarize this paper.

2 System Model and Problem Formulation

2.1 System Model

The system model is shown in Fig. 1. Suppose there are n end devices and m
edge servers deployed in the scheduling network. Denote ei(i ∈ {1 . . . n}, ei ∈ E)
as one end device and sj(j ∈ {1 . . . m}, sj ∈ S) as one edge server. Suppose
all devices and servers are heterogeneous with different computing capabilities
and suppose servers have better computing capabilities comparing with devices.
Suppose there is a common DNN model needed to be trained in a distributed
training manner by the whole network. Since we use model splitting technique,
which means the DNN model will be split inside between two successive layers
and then be trained separately on devices and servers. We also have a separate
parameter server PS for updating parameters in the whole training process,
devices and edge servers will send local training improvement to PS to obtain
the global DNN model. The end devices are connected to edge servers and PS
by wireless, the edge servers and PS are connected by wired.

Suppose we use the Stochastic Gradient Descent (SGD) algorithm to train
the DNN model. Suppose the DNN model has v layers. Each device has its own
data set, and the data set can be divided into many batches. For the training
process, each data batch will undergo one forward propagation and one backward
propagation. We call this process as an iteration. For a whole training process,
each batch may be trained for several iterations and there are many iterations.
But since we use the synchronous iteration method for training, which means
iterations on different devices do not affect each other. So in our model, we only

498 C. Fang et al.

consider one batch in each device for one iteration. Define an iteration for one
batch on ei as a task mi. All tasks are computed in a serial manner on end
devices and edge servers. For one task, an appropriate model splitting point will
be selected according to the calculation amount, the size of parameter data and
the size of intermediate results of each layer. Then the first half of the model will
be trained on the end device, and the second half of the model will be trained
on an edge server. For each task, the edge server will be selected according to
the real-time status to undertake the training of the second half of the model.
The total training time under synchronous training is the sum of all iterative
training time. So we can minimize the total training time by minimizing the
training time of each iteration.

Optimization objective: Minimize the training time of one iteration.

2.2 Problem Formulation

The time for completing task mi can be expressed as

ti = tei + ttrans
i + tsi + twi + tup

i , (1)

where tei and tsi represent the training time for mi on end device and edge server,
respectively, twi represents the waiting time for executing mi on the edge server,
ttrans
i represents the data transfer time between end device and edge server, and

tup
i represents the time to update the parameters on PS.

Define a binary variable xr
i to indicate whether mi is split at the r-th layer

of DNN, we have

xr
i =

{
1 :mi is split at the r-th layer of the DNN;
0 :otherwise.

(2)

Note that
v∑

r=1
xr

i = 1, which means mi should select one and only one model

splitting point.
For the first item tei , it consists of the forward propagation time te,f

i and the
backward propagation time te,b

i on ei. We have

tei = te,f
i + te,b

i =
v∑

r=1
(xr

i ·
r∑

w=1
(Lf

ei,w + Lb
ei,w)), (3)

where Lf
ei,w and Lb

ei,w represent that for task mi, the forward and the backward
propagation time for the w-th layer when processing one batch on ei.

For the second item ttrans
i , similar to tei , it consists of the forward transmission

time ttrans,f
i and the backward transmission time ttrans,b

i on ei. We have

ttrans
i = ttrans,f

i + ttrans,b
i = 2 ·

v∑
r=1

xr
i · Gr

Be,s
, (4)

where Gr represents the output size of the r-th layer in the forward phase, which
is equal to the output data of the (r+1)-th layer in the backward phase, and Be,s

Synchronous Federated Learning Latency Optimization 499

indicates the bandwidth between any device and any edge server (we suppose
the bandwidths between any device and any edge server are the same).

For the third item tsi , denote a binary scheduling variable yj
i to indicate

whether mi is executed on the server sj . We have

yj
i =

{
1 :mi is executed on the server sj ;
0 :otherwise.

(5)

Note that
m∑

j=1

yj
i = 1, which means that a task can only select one edge server

for offloading. Then the third item tsi can be expressed as

tsi = ts,f
i + ts,b

i =
m∑

j=1

(yj
i ·

v∑
r=1

(xr
i ·

v∑
w=r+1

(Lf
sj ,w + Lb

sj ,w))), (6)

where ts,f
i and ts,b

i represent forward and backward propagation time on edge
server sj . Lf

sj ,w and Lb
sj ,w represent the mi’s forward and the backward process-

ing one batch time for layer w on sj .
For the fourth item tw, we first denote ATi as the arrival time of task mi to

the edge server. We have

ATi = te,f
i + ttrans,f

i , (7)

where te,f
i is the forward propagation time on the end device ei, and ttrans,f

i is
the time that the intermediate result is transferred from the end device to the
edge server.

When task mi arrives, there may already have some tasks from other devices
on the server forming a waiting queue. Therefore, the task should wait for the
completion of these previous tasks. Then the fourth item twi can be expressed as

twi = max{0, Ii − ATi}, (8)

where Ii represents the completion time of the task which precedes task mi on
the same task queue. Ii can be expressed as

Ii =
m∑

j=1

yj
i · (

n∑
i′=1

(yj
i′ · Zi(mi′) · (ATi′ + twi′ + tsi′))), (9)

where Zi(mi′) is a binary scheduling variable to indicate whether task mi′ pre-
cedes task mi,τ . We have

Zi(mi′) =

{
1 :mi′ arrives one bit earlier than task mi;
0 :otherwise.

For the last item tup
i , we have

tup
i =

v∑
r=1

xr
i · (

r∑
w=1

dw

Be,ps
), (10)

500 C. Fang et al.

where dw is the parameter data size of the w-th layer, and Be,ps is the bandwidth
between PS and any device (we suppose the bandwidths between any device and
PS are the same).

Our optimization goal is to minimize the training time of one iteration. So
we have

min(max
i∈{1,2,...,n}

ti).

(1) (2) (3) (4) (5) (6) (8) (10)
v∑

r=1

xr
i = 1;

m∑
j=1

yj
i = 1.

(11)

The analysis of the problem shows that there are two types of 0–1 variable
in this optimization problem: xr

i and yj
i , while the others are constants. As

each end device has its own decision variables, the number of variables is large.
The two decision variables of one device in (6) are multiplied together, so this
optimization problem is nonlinear. In summary, we learn that the optimization
problem is very complex and difficult to solve directly.

3 Algorithm

In the last section, we give the whole problem model and find it is hard to be
solved directly. In this section, we will try to solve it and give our algorithm. For
solving it, we need to find some way to reduce the size of the solution space. If we
use the model splitting technique, the DNN can be split at any layer. However,
the characteristics of different layers, such as the size of the computation and the
parameter data, vary greatly. So not all layers are suitable for splitting. In our
algorithm, we will first reduce the number of split points between each device
and each server with the help of the Partition Points Selection(PPS) algorithm in
[17]. Then based on matching theory, we design our whole algorithm of selecting
a split point and an offloaded server for each end device. We name our algorithm
as the Federated Learning Offloading Acceleration (FLOA) algorithm.

3.1 Many-to-One Matching with Externalities

In this sub-section, we will give some definitions. These definitions will be useful
for the FLOA algorithm description. The related two-sided matching problem
is to assign agents of one set to agents of other disjoint set [18]. From Sect. 2
we know that one end device can only select one edge server, while one edge
server can be assigned to multiple devices. So the server selection is many-to-
one matching, which can be defined as follows.

Synchronous Federated Learning Latency Optimization 501

Definition 1. Suppose e is one end device from E, and suppose s is one edge
server from S. Define a many-to-one matching function μ on E ∪ S, such that

(1) |μ(e)| = 1 for every device e ∈ E and |μ(s)| ≤ n for every server s ∈ S;
(2) e ∈ μ(s) if and only if s = μ(e).

Based on Definition 1, we define Uei
(μ) as the utility function for ei on μ,

and define Us(μ) as the utility function for s on μ. The utility function can be
used for measuring the matching effect. Then we have

Uei
(μ) = 1

ti(μ)
, (12)

where ti(μ) is the task training time of ei under the matching state μ.
For Us(μ), we have

Us(μ) = 1
max

i∈{1,...,n}
ti(μ)

, (13)

Based on (12) and (13), we know that the matching effect is decided by the
task training time ti(μ). However, in our environment, training time for different
tasks have high relationship, which means devices and edge servers care about
more than their own matching. So traditional pairwise stable matching may not
exist [19]. We continue to leverage the concept of two-sided exchange stability
[20] on the following definition.

Definition 2. Define μe′
e = {μ \ {(e, s), (e′, s′)}} ∪ {(e, s′), (e′, s)} as a swap

matching, where μ(e) = s, μ(e′) = s′, and e �= e′.

A swap matching can enable device e and e′ to swap their matched servers with
each other, and remain the matching of other devices and servers unchanged.
Notice that when e′ is 0, it means that the edge server matched by device e is
changed to s′, i.e. μ0

e = {μ \ {(e, s)}} ∪ {(e, s′)}, where μ(e) = s and s �= s′.

Definition 3. Given a matching function μ and a pair of devices (e, e′), if there
exists μ(e) = s and μ(e′) = s′, and satisfies: (1) ∀x ∈ {e, e′, s, s′}, Ux(μe′

e) ≥
Ux(μ); (2) ∃x ∈ {e, e′, s, s′}, Ux(μe′

e)>Ux(μ); then we call (e, e′) as a swap-
blocking pair under μ.

Definition 4. A matching μ is said to be two-sided exchange stable if and only
if there is no swap-blocking pairs in μ.

Definition 4 indicates that a matching is two-sided exchange stable if all devices
fail to increase their own or the matching edge server’s utility after changing the
matching edge server.

502 C. Fang et al.

3.2 FLOA Algorithm

Now we discuss the FLOA algorithm. The FLOA pseudo code can be found in
Algorithm 1, and the detail steps are shown in the following.

Algorithm 1: Federated Learning Offloading Acceleration Algorithm
Input: E:Set of device; S:Set of server; P:Set of split points to be

selected.
Output: A two-sided exchange stable matching μ;a split point strategy θ.

1 Initialization a matching μ.
2 Initialize a split point strategy θ for all devices based on the set P.
3 repeat
4 ∃e ∈ E,μ(e) = s.
5 Re-select a split point in P for device e such that Ue(μ0

e) is the
maximum.

6 if device e meets Ue(μ0
e) ≥ Ue(μ) then

7 Device e sends an offload request to server s′.
8 if Us(μ0

e)>Us(μ) or Us′(μ0
e)>Us′(μ) then

9 The edge server s′ receives the request:μ ← μ0
e

10 change split point strategy θ.
11 else
12 The edge server s′ rejects the request,
13 the split point strategy θ remains unchanged.

14 ∃e ∈ E, e′ ∈ E,μ(e) = s, μ(e′) = s′, and e �= e′.
15 Select a split point in P for device e and e′ such that Ue(μe′

e) and
U ′

e(μ
e′
e) is the maximum.

16 if device e and e′ meet Ue(μe′
e) ≥ Ue(μ) and Ue′(μe′

e) ≥ Ue′(μ) then
17 Device e sends an offload request to server s′, e′ sends an offload

request to s.
18 if Us(μe′

e)>Us(μ) or Us′(μe′
e)>Us′(μ) then

19 The edge servers s and s′ both receive the request:μ ← μe′
e

20 change split point strategy θ.
21 else
22 The edge servers s and s′ both reject the request,
23 the split point strategy θ remains unchanged.

24 until Matching μ meets Definition 4 ;

step 1 Initialize a matching μ and a split point strategy θ based on the selected
split point set P, which is obtained from the PPS algorithm (line 1–2).

step 2 Perform μ0
e for device e and re-select a split point in P such that Ue(μ0

e)
is maximized under all available split points (line 4–5).

step 3 If Ue(μ0
e) is greater than Ue(μ), which is the utility of device e when

matching the original matching server s, then let e send an offload request
to s′ (line 6–7).

Synchronous Federated Learning Latency Optimization 503

step 4 If Us(μ0
e) or Us′(μ0

e) increases after e changes the matched server, then
let s′ accept the offload request and update the matching μ and the split
point policy θ, otherwise μ and θ remain unchanged. (line 6–13).

step 5 Perform μe′
e for device e and e′, re-select a split point in P such that

Ue(μe′
e) and Ue′(μe′

e) is maximized under all available split points (line
14–15).

step 6 If both e and e′ have greater utility Ue(μe′
e) and Ue′(μe′

e) after swapping
the matched servers than that before, then e and e′ send offload requests
to s′ and s, respectively (line 16–17).

step 7 If the utility of s or s′, Us(μe′
e) and Us′(μe′

e) increases after the swap,
then s and s′ accept the offload request and update μ and θ, otherwise
μ and θ remain unchanged (line 18–23).

step 8 Repeat above steps until Definition 4 is satisfied.

4 Simulation and Experiment

In this section, we demonstrate the validity of the previous sections of the work
through simulation experiments. The DNN model to be trained is VGG16, and
the training data is a set of RGB images of size 224×224×3. All model training
tasks are performed using the pytorch. The computing power of the end devices
is simulated with the following 5 CPUs: AMD Ryzen 7 4800H, AMD Ryzen
9 3900X, i5-6200U, i5-11400H, and i7 11700F. And the computing power of
the edge servers is simulated with the following GPU: NVIDIA GeForce RTX
2060(Note book).

First, we use CPUs and GPU to train the DNN model, and get the forward
and backward propagation time for each layer of the DNN model on each end
device and each edge server, i.e. the value of Lf

ei,w, Lb
ei,w, Lf

sj ,w and Lb
sj ,w. Then

we get the size of parameter data and intermediate data for each layer of the
DNN model, i.e. the value of Gr and dw. We assume that there are several end
devices, 5 edge servers and one parameter server in the scheduling network, and
that the value of bandwidth Be,ps is 6MBps.

In Subsect. 4.1, according to PPS algorithm, we compare the total training
time of the task when different layers are used as split point, and get the set of
split points P. In Subsect. 4.2, simulations are carried out with different numbers
of end devices and different bandwidths between end devices and edge servers,
respectively, to validate the proposed system model and algorithm.

4.1 Split Point Selection Experiment

First, we train the DNN model using a set of images of size 224 × 224 × 3, and
obtain the forward and backward propagation time for each layer of VGG16 on
different end devices and different edge servers. Figure 2 shows the training time
for each layer of VGG16 on one of the devices and one of the servers. We then
study the structure of VGG16 to obtain the amount of data for the parameters
and intermediate data for each layer of VGG16.

504 C. Fang et al.

Fig. 2. The training time for each layer of VGG16 on device and server

Fig. 3. The total training time under different split points of VGG16

We also set up a range of different bandwidths between the end devices and
the edge servers. We then calculate the total training time ignoring waiting time
for the task at different bandwidths with different layers as split point. Figure 3
shows that time when the bandwidth between the end device and the edge server
is 6 Mbps. We obtain that the third, sixth and tenth layers are the three split
points with the smallest total training time.

4.2 Simulation Results

In order to compare the effect of the algorithm with different number of devices
and different bandwidths, first we set the bandwidth between the end device
and the edge server to 6 Mbps, and the number of end devices from 40 to 90.
Then we set bandwidth from 4 Mbps to 6 Mbps and fix the number of devices at
50. In both cases above, we calculate the time for a single iteration in different
cases: Non-split, Fixed-split, Random strategy, and FLOA. The result is shown
in Fig. 4.

In Fig. 4, FLOA indicates that we use the FLOA algorithm for training task
scheduling. Non-split indicates that no model splitting is used, i.e. all training
tasks are performed locally on the device. Fixed-split indicates that the split
point is fixed and the training task randomly selects a edge server for offloading.
Random strategy means randomly selecting a split point and a edge server for
splitting and offloading.

Synchronous Federated Learning Latency Optimization 505

Fig. 4. Simulation result. (a) One iteration time with different number of devices. (b)
One iteration time at different bandwidths.

As shown in the Fig. 4 (a), as can be seen from Non-split, the iteration time is
always limited by the worst-performing device as the number of devices increases.
FLOA obviously works better. Compared to Non-split, the one iteration time
of FLOA is reduced by 47%. Compared to Fixed-split, the one iteration time
is reduced by 14%. And compared to Random strategy, the one iteration time
is reduced by 28%. In the Fig. 4 (b), FLOA is still obviously better than other
solutions at different bandwidths.

5 Conclusion

In this paper, we use model splitting and task scheduling to reduce the over-
all training time for synchronous federated learning (FL) by reducing the time
for one iteration. First we build mathematical models for synchronous federated
learning in edge computing scenario. Then we analyse the mathematical model
and design the corresponding solutions: using PPS algorithm to reduce the size
of solution space and then proposing FLOA algorithm based on the two-sided
matching theory to obtain the DNN splitting and offloading scheme. Experimen-
tal and simulation results show that using model splitting in synchronous FL,
dynamically selecting split points and assigning training tasks can effectively
reduce the time spent in synchronous FL.

References

1. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private
information using embedded sensors in smart devices. IEEE Network 32(4), 8–14
(2018)

2. Cai, Z., Xiong, Z., Xu, H., Wang, P., Pan, Y.: Generative adversarial networks: a
survey toward private and secure applications. ACM Comput. Surv. 54(6), 1–38
(2021)

3. Ren, J., Yu, G., Ding, G.: Accelerating DNN training in wireless federated edge
learning systems. IEEE J. Sel. Areas Commun. 39(1), 219–232 (2021)

506 C. Fang et al.

4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

5. Cai, Z., Shi, T.: Distributed query processing in the edge-assisted IoT data moni-
toring system. IEEE Internet Things J. 8(16), 12679–12693 (2021)

6. Zhu, T., Shi, T., Li, J., Cai, Z., Zhou, X.: Task scheduling in deadline-aware mobile
edge computing systems. IEEE Internet Things J. 6(3), 4854–4866 (2019)

7. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Arti-
ficial Intelligence and Statistics. Proceedings of Machine Learning Research, vol.
54, pp. 1273–1282. PMLR, 20–22 April 2017

8. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-
organized federated learning framework for IoT. IEEE Internet Things J. 8(5),
3088–3098 (2021)

9. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated
learning with non-I.I.D. data in AIoT. IEEE Trans. Ind. Inform. 18(2), 1310–1321
(2022)

10. Lim, W.Y.B., et al.: Federated learning in mobile edge networks: a comprehensive
survey. IEEE Commun. Surv. Tutorials 22(3), 2031–2063 (2020)

11. Wu, W., He, L., Lin, W., Mao, R.: Accelerating federated learning over reliability-
agnostic clients in mobile edge computing systems. IEEE Trans. Parallel Distrib.
Syst. 32(7), 1539–1551 (2021)

12. Zheng, J., Li, K., Tovar, E., Guizani, M.: Federated learning for energy-balanced
client selection in mobile edge computing. In: 2021 International Wireless Commu-
nications and Mobile Computing (IWCMC), pp. 1942–1947 (2021)

13. Luo, S., Chen, X., Wu, Q., Zhou, Z., Yu, S.: HFEL: joint edge association and
resource allocation for cost-efficient hierarchical federated edge learning. IEEE
Trans. Wireless Commun. 19(10), 6535–6548 (2020)

14. Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X.: Convergence of
edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv.
Tutorials 22(2), 869–904 (2020)

15. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving
the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8),
1738–1762 (2019)

16. Qu, X., Hu, Q., Wang, S.: Privacy-preserving model training architecture for intel-
ligent edge computing. Comput. Commun. 162, 94–101 (2020)

17. Shi, L., Xu, Z., Shi, Y., Fan, Y., Ding, X., Sun, Y.: A DNN inference accelera-
tion algorithm in heterogeneous edge computing: joint task allocation and model
partition. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) Collab-
orateCom 2020. LNICST, vol. 349, pp. 237–254. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-67537-0 15

18. Liu, Z., Wang, K., Zhou, M.T., Shao, Z., Yang, Y.: Distributed task scheduling in
heterogeneous fog networks: a matching with externalities method. In: 2020 Inter-
national Conference on Computing, Networking and Communications (ICNC), pp.
620–625 (2020)

19. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 120(5), 386–391 (2013)

20. Bodine-Baron, E., Lee, C., Chong, A., Hassibi, B., Wierman, A.: Peer effects and
stability in matching markets. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol.
6982, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24829-0 12

https://doi.org/10.1007/978-3-030-67537-0_15
https://doi.org/10.1007/978-3-030-67537-0_15
https://doi.org/10.1007/978-3-642-24829-0_12
https://doi.org/10.1007/978-3-642-24829-0_12

	Synchronous Federated Learning Latency Optimization Based on Model Splitting
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model
	2.2 Problem Formulation

	3 Algorithm
	3.1 Many-to-One Matching with Externalities
	3.2 FLOA Algorithm

	4 Simulation and Experiment
	4.1 Split Point Selection Experiment
	4.2 Simulation Results

	5 Conclusion
	References

