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Abstract: The excellent transmission performance of 5G provides reliable support for vehicular
edge computing (VEC). However, due to the drawbacks of small coverage area and high energy
cost of 5G base stations (BSs), long-term usage will bring huge economic costs to service
operators. In this paper, we design a new 4G-5G hybrid offload architecture for VEC scenarios.
On this basis, we first build the mathematical model and find that it cannot be solved directly.
Then we design algorithms for offline and online cases respectively. Simulation results show
that our online algorithm (ONA) can significantly reduces the operator’s economic cost while
achieving a high task success rate, and the effect is better than other comparison schemes. For
example, when the number of tasks is 705,600, the economic cost is reduced by 8.47%–48.7%
compared to AA, RS and GA scheme.
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1 Introduction

In recent years, the rapid development of vehicle
technology and wireless communication has enabled the
modern vehicles to be more intelligent. Many new
vehicle applications are emerging, such as autonomous
driving and on-board infotainment services (??). These
applications all require intensive real-time computation.
However, due to limited computing resources, the
local computing unit of the vehicle is often unable
to meet the computing demands of such applications.
To overcome this limitation, vehicular edge computing
(VEC) has been proposed to address this problem. As
an emerging and recognised promising paradigm, VEC
can provide fast computing services for vehicle users
(???). Specifically, through vehicle-to-infrastructure (V2I)
communications, resource-constrained vehicles can offload
their delay-sensitive computation-intensive tasks to 5G base
stations (BSs) configured with edge servers for processing
(Cai et al., 2019; ?; Cai and Shi, 2021). For example,
vehicles can transmit traffic information within the current
perception range to the edge server, and the server makes a
global judgment on the information and returns the result to
the vehicle as a reference. In addition, compared with cloud
computing, the edge server in VEC is closer to the vehicles,
so VEC can achieve lower data transmission delay (??), and
vehicle users can get better quality of service (QoS) (?).

However, in order to support the high density of vehicle
users in cities, the transportation system needs to deploy
5G BSs densely on the roadside. At present, 5G BSs have
the disadvantages of high energy consumption and small
coverage area (Cheng et al., 2017), long-term usage will
bring huge economic costs to service operators. Therefore,
how to reduce the economic cost of operators providing
VEC services deserves investigation.

Previous research has made some contributions to
reducing the economic cost of VEC service operators
(???). In these works, they focus on the energy consumed
during task offloading and computing, and save costs by
making reasonable resource allocation and task offloading
decisions. In fact, there is a huge waste of energy in the
low-traffic time period, which needs more attention (Auer,
2011). It is not necessary to keep 5G BSs active all the
time. We can save cost by switching 5G BSs to sleep status
during low-traffic periods. However, switching 5G BSs to
sleep status raises a new problem. The 5G BSs in VEC are
arranged along roads and each segment of the road is served

by only one 5G BS. When a 5G BS switches to sleep state
in low-traffic periods, vehicles within its coverage will not
be able to offload tasks. In other words, the success rate
of the tasks will be greatly reduced. This makes it very
demanding for 5G BSs to sleep without affecting vehicle
users.

Motivated by the aforementioned discussion, we aim to
give a new and more suitable solution. In this paper, we
further investigate the problem of minimising the economic
cost of VEC service operators. The contributions of this
paper are summarised as follows.

• We propose a new 4G-5G hybrid offload architecture
for VEC scenarios, in which 5G BS can switch to
sleep state during low-traffic periods, and tasks
generated in the corresponding area will be offloaded
to 4G BS for processing. Of course, this will not
break the delay constraint of the tasks during low
traffic time periods.

• We established a mathematical model and discussed
in detail from three aspects of communication,
calculation and cost. Furthermore, our work is among
the few efforts to consider BS switching cost in the
formulation of the problem.

• We design the heuristic algorithm for the offline case
and the online case, respectively. Through
experimental simulations, it is confirmed that our
scheme significantly reduces the economic cost of
VEC service operators while achieving a high task
success rate.

The rest of this paper is organised as follows. In
Section 2, the related works are introduced. In Section 3,
the system model is presented, including communication
model, computation model and cost model. In Section 4,
our offline and online algorithms are described. Detailed
simulation results and conclusions of the paper are given in
Sections 5 and 6, respectively.

2 Related works

There has been a lot of studies on the cost optimisation
for VEC, mainly focused on two aspects, one is the
optimisation of terminal vehicle cost, and the other is the
optimisation of infrastructure cost such as roadside BSs.

First, we give a brief introduction to the research
on terminal vehicle cost optimisation. ? propose a
multi-device and multi-server task joint task offloading
game (JTOG) algorithm in order to minimise the energy
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consumption for all vehicular terminal devices generating
tasks. ? jointly optimise the offloading proportion and
uplink/computation/downlink bit allocation of multiple
vehicles, for the purpose of minimising the total energy
consumption of the vehicles under the delay constraint. ?
jointly optimise the latency and cost by considering both
offloading decisions, communication and computational
resource allocation.

Next, we introduce research on roadside infrastructure
such as BSs. ? save infrastructure costs by using coherent
beamforming techniques to reduce the density of 5G
BS placement at the roadside. They designed a heuristic
algorithm for the iterative coherent beamforming node
design (ICBND) algorithm to obtain the approximate
optimal solution. And they significantly reduce the cost of
communication network infrastructure. ? propose a sleep
model for BSs in cellular networks and investigates the
benefits of turning off a portion of BSs during low traffic.
In the article, the authors propose a simple analytical
model that determines the optimal BS shutdown time
based on daily traffic patterns. However, in that paper
the authors consider only one switchover for the BS,
and the effect of this switchover on reducing the energy
consumption and operating costs of the BS is relatively
small. ? proposed a simple and effective algorithm to
save costs. The main idea of the algorithm is to let BSs
cycle alternately between ON and OFF states, and adjust
the alternating cycle appropriately according to the vehicle
request. Chavarria-Reyes et al. (2015) propose an efficient
algorithm to minimise the energy cost by jointing the cell
association and on-off scheme. ? optimise the task latency
while allowing the candidate BSs to randomly switch states
between sleep and work to save cost. ? minimise energy
cost by forcing idle BSs to sleep or dynamically adjusting
the signal range of BSs through a software-defined
network, considering connectivity, communication, and
power perspectives, respectively. ? consider the scenario
where multiple mobile users share multiple heterogeneous
edge servers and propose an approximation algorithm to
minimise the energy cost of the MEC system. ? consider
optimising the quality of user experience under a long-term
energy budget constraint.

However, some of the above-mentioned studies only
focus on the cost of task offloading and computing, while
others do not take into account the impact of switching
the BS to the sleep state on the task success rate. In this
paper, we propose a new 4G-5G hybrid offload architecture
for VEC scenarios based on existing work. It combines the
advantages of 4G BSs and 5G BSs. Furthermore, we design
the heuristic algorithm for the offline case and the online
case, respectively. Through experimental simulations, it
is confirmed that our scheme significantly reduces the
economic cost of VEC service operators while achieving a
high task success rate.

3 System model

In this section, we introduce the complete process of
tasks being processed under the 4G-5G hybrid offload
architecture and formulate the optimisation problem.

Figure 1 4G-5G hybrid task offloading framework in VEC
(see online version for colours)

Table 1 Major notations

Notations Descriptions
Dj Data size of task lj
Cj Processing density of task lj
Tmax
j Maximum tolerable delay of task lj

R4G, R5G Maximum transmission rate between vehicle and
4G BS/5G BS

k4G(tj) Number of tasks transmitted to the 4G BS at time
slot tj

k5G
i (tj) Number of tasks transmitted to 5G BS si at time

slot tj
µj Offloading decision of task lj
rj Transmission rate of task lj
f Computing capability of edge server
Ea, Eua Static energy consumed by an active/inactive 5G

BS in a time slot
E4G Static energy consumed by the 4G BS in a time

slot
xon
i , xoff

i Number of times the 5G BS si is turned on/off
in time period T

Eon, Eoff Energy required for a 5G BS to turn on/off once
αi(t) State of 5G BS si at time slot t
ζ Dynamic energy consumed by a BS to process a

unit of task data
ρ Money corresponding to each unit of energy

consumed by the BSs

Consider a scenario consisting of multiple vehicles and
multiple BSs (including one 4G BS and several 5G BSs),
as shown in Figure 1.

Suppose the whole road is divided into many segments,
each segment is covered by one 5G BS and the whole
road can be covered by the 4G BS. Suppose these BSs
are connected by wired links, so the communication time
among them can be ignored. Suppose each BS is equipped
with an edge server with the same computing capability.
Suppose that during the entire scheduling time, there will
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be vehicles passing the road and need to offload tasks to
the BS for processing.

However, since the 5G BS energy consuming is high,
long-term usage will bring huge economic costs to service
operators. We aim to minimise the economic cost of the
operator while ensuring the success of the tasks as much
as possible. We want to achieve the optimisation goal
by appropriately ‘turning on/off’ 5G BSs and reasonably
determining the offloading method of each task.

The main notations used in the following discussion are
listed in Table 1.

3.1 Communication model

We first discuss the communication model. Suppose the
whole scheduling time T can be divided into h time slots
τ equally and we normalise τ = 1. Suppose that in the
scheduling time period T , there are m vehicles passing
by and generating tasks, and each vehicle generates only
one task. Suppose tasks generated at any time slot can
be completed before the next time slot. Suppose tasks
received by the same BS in the same time slot have the
same transmission rate after the communication resources
are allocated. Denote t (t ∈ T , 1 ≤ t ≤ h) as a time slot.
Denote N as the set of all 5G BSs, and si (si ∈ N , 1 ≤
i ≤ n) as a 5G BS. Denote L as a set of all tasks, and lj
(lj ∈ L, 1 ≤ j ≤ m) as a task. We describe the task with
three attributes. One, the task data size, and we denote it
as Dj . Two, the processing density of the task (in CPU
cycles/bit), which can be multiplied by the data size of the
task to obtain the computing resources required by the task,
and we denote it as Cj . Three, the maximum tolerable delay
for tasks, and we denote it as Tmax

j .
Suppose that all tasks have the same attributes, that is,

the data size, processing density and maximum tolerable
delay of all tasks are the same. For each task, it can only
be transmitted to one BS, and we use a binary variable µj

to indicate the offloading result for task lj , then we have

µj =

{
1 lj is transmitted to the 4G BS;
0 lj is transmitted to one 5G BS. (1)

Then when lj is transmitted to the 4G BS, we can get the
data transmission rate as

r4Gj =
R4G

k4G(tj)
, (2)

where R4G is the maximum transmission rate between a
vehicle and the 4G BS, tj is the time slot when lj is
generated, and k4G(tj) is the number of tasks transmitted
to the 4G BS at time slot tj . We can similarly get the data
transmission rate between the corresponding vehicle and the
5G BS si as

r5Gi,j =
R5G

k5Gi (tj)
, (3)

where R5G is the maximum transmission rate between a
vehicle and the 5G BS, k5Gi (tj) is the number of tasks
transmitted to si at time slot tj . We use βi,j(t) to indicate

whether the vehicle generating lj is within the coverage of
si at time slot t, then we have

βi,j(t) =

1 the vehicle generating lj is within
si’s coverage at time slot t;

0 otherwise.
(4)

Therefore, the transmission rate of lj can be expressed as

rj =

{
r4Gj if µj = 1;
r5Gi,j if µj = 0, βi,j(tj) = 1. (5)

3.2 Computation model

In this subsection we continue to discuss the computation
model. The total task delay includes the transmission delay,
the waiting delay and the calculation delay. Then for task
lj , we have

T total
j = T trans

j + Tw
j + T comp

j , (6)

where T trans
j , Tw

j and T comp
j correspond to the

transmission delay, the waiting delay and the calculation
delay for lj respectively. In the following, we will give the
specific formula for each component.

For the transmission delay of task lj , it mainly depends
on the task data size that needs to be transmitted and
the offloading decision of vehicle – j. Based on the task
transmission rate we obtained in the previous section, the
transmission delay of lj can be expressed as

T trans
j =

Dj

rj
, (7)

For the waiting delay of task lj , it mainly depends on the
load condition of the edge server. We assume that edge
servers use non-preemptive CPU allocation and allocate
computing resources to one task at a time until the task is
completed. When lj arrives at the task queue of the edge
server, if there are no other tasks in front of it, it will be
calculated immediately, that is, its waiting delay is 0. On
the contrary, if there are other tasks waiting to be calculated
or being calculated in front of lj , then it needs to wait for
its previous task to be calculated. We use γj′(lj) to indicate
whether lj′ is the previous task in the task queue of lj , then
we have

γj′(lj) =

1 lj′ is the previous task in the task
queue of lj ;

0 otherwise.
(8)

Thus the waiting delay required for the part of task lj to be
processed by the edge server can be expressed as

Tw
j = max


m∑

j′=1

γj′(lj) · ((tj′ + T trans
j′ + Tw

j′

+
Dj′ · Cj′

f

)
− (tj + T trans

j )), 0

}
, (9)

where f is the computing capability of an edge server.
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For the calculation delay of task lj , it is mainly related
to the computing resource requirements of lj and the
computing capability of the edge server. Therefore, the
calculation delay required by the data computed by the edge
server can be expressed as

T comp
j =

Dj · Cj

f
. (10)

Based on the above discussion, we can get the total delay
of lj .

3.3 Cost model

In this subsection we continue to discuss the cost model.
We assume that the economic cost of the service operator is
positively related to the energy consumed by the BSs. We
divide the total energy consumption of BSs into three parts,
including static energy consumption(energy consumption
of power transmission and cooling, etc.), load-related
dynamic energy consumption and state-switching energy
consumption (?). Denote Etotal as the total energy
consumed by all BSs in time period T . Therefore Etotal

can be expressed as

Etotal = Es + Ed + Eswitch, (11)

where Es and Ed are the static energy and dynamic energy
consumed by all BSs in the time period T , respectively.
Eswitch is the state-switching energy consumed by all BSs
in the time period T . In the following, we will give the
specific formula for each component.

For the first item Es, we use a binary variable αi(t) to
indicate the state of 5G BS si at time slot t, then we have

αi(t) =

{
1 si is active at time slot t;
0 otherwise. (12)

Thus Es can be expressed as

Es =

h∑
t=1

n∑
i=1

(αi(t) · Ea + (1− αi(t)) · Eua)

+ h · E4G, (13)

where Ea and Eua are the static energy that a 5G BS
needs to consume when it is active and inactive in a time
slot, respectively. And E4G represents the static energy
consumed by the 4G BS in a time slot.

For the second item Ed, it is mainly related to the
computing resources required to process the tasks. Then Ed

can be expressed as

Ed =
m∑
j=1

ζ ·Dj , (14)

where ζ is the dynamic energy consumed by a BS to
process a unit of task data.

For the third item Eswitch, it depends on how many
times the 5G BSs are ‘turned on’ and ‘off’. We use xon

i and
xoff
i to represent the number of times that si is turn on and

off in time T respectively. We have

xon
i =

h∑
t=1

max{(αi(t)− αi(t− 1)), 0}, (15)

xoff
i =

h∑
t=1

max{(αi(t− 1)− αi(t)), 0}. (16)

Then Eswitch can be expressed as

Eswitch =

n∑
i=1

(xon
i · Eon + xoff

i · Eoff ), (17)

where Eon and Eoff are the energy cost of turning on
and off a 5G BS once, respectively. Based on the above
discussion, the economic cost of the service operator in the
time period T can be expressed as

M total = ρ · Etotal, (18)

where ρ represents the money that the operator needs to pay
for each unit of energy consumed by the BSs.

3.4 Problem formulation

In this paper, we aim to reduce the economic cost
of the service operator by minimising the total energy
consumption of all BSs, while we guarantee the success
of the tasks as much as possible. Based on the above
discussion, our optimisation problem can be formulated as
follows

min
αi(t),µj

M total (19a)

s.t. αi(t) ∈ {0, 1}, (19b)
µj ∈ {0, 1}, (19c)
∀i ∈ [1, n], (19d)
∀t ∈ [1, h], (19e)
∀j ∈ [1,m], (19f)
T total
j ≤ Tmax

j . (19g)

The variables in the optimisation problem are µj and αi(t),
which almost appear in all items with different forms. T ,
h, m, and other symbols are all constants or determinable
values. In real scenarios, we may only know the tasks that
have been generated or being generated, and the results of
the decisions that have been made are also irreversible. So
the values of αi(t) and µj are difficult to be solved directly.
We will try to get an approximate optimal solution in the
next section.

4 Algorithms

In Section 3, we give the original problem model and show
it is difficult to be solved directly. In this section, we will
try to find a feasible solution for the problem. First, we
design an offline algorithm. In the offline algorithm, we
suppose that we know the total number of tasks and the
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time slot in which any task is generated. Then we design
an online algorithm. In the online algorithm, we only know
tasks that have been or are being generated, while tasks
that will be generated are not known. This means that we
need to dynamically change the state of the 5G BSs and
the way for transmitted tasks based on the situation of past
and current time slots. In the following, we first discuss the
offline algorithm in Subsection 4.1. Then we discuss the
online algorithm in Subsection 4.2.

4.1 Offline strategy

For the offline strategy, we assume that we know the
corresponding location and time slot when any task
is generated. Based on this information, we will first
determine cases on where tasks transmitted to the 4G
BS cannot satisfy the delay constraint. Then, we further
determine cases on where 5G BSs should be in sleep. Then
main idea for the offline strategy can be summarised into
four steps as the following.

Algorithm 1 Offline algorithm (OFFA)
Input: L: the task set; tj : the time slot when any task lj

is generated; βi,j(tj): the location when any task lj is
generated;

Output: M total

1: for 5G BS si ∈ N do
2: for Task lj ∈ L (βi,j(tj) = 1) do
3: Calculate T total

j according to formula (6) under the
condition that lj is transmitted to the 4G BS;

4: if (T total
j ≤ Tmax

j ) then
5: αi(tj) = 0, µj = 1;
6: else
7: αi(tj) = 1, µj = 0;
8: end if
9: end for
10: Get all values of αi(t) (∀t ∈ T ), select all periods when

αi(t) is equal to 0 continuously and get the set T;
11: for Tua

q ∈ T do
12: if (Tua

q < Ton + Toff ||(Ea − Eua) · Tua
q ≤ Eon +

Eoff )
13: αi(t) = 1(t ∈ Tua

q );
14: Remove Tua

q from T;
15: end if
16: end for
17: end for
18: Calculate the economic cost M total;

Step one, we first randomly select a 5G BS si and pick
out all tasks generated within its coverage. When no task is
generated within the coverage of si in a time slot, the state
of si in this time slot is tentatively set as inactive. For a
task generated within range of si, we try to transmit it to
the 4G BS and calculate its total delay. If the total delay
can satisfy the delay constraint, the state of si in this time
slot is tentatively set as inactive too. Otherwise, let si be
active at this time slot and let generated tasks at this time
slot transmit to si.

Step two, according to the state information
corresponding to each time slot si obtained in the first step,

a series of time periods consisting of adjacent time slots in
which si is in an inactive state are screened and obtained.
Denote the set of these time periods as T, and denote Tua

q

(Tua
q ∈ T, q = 1, ...) as one of the time periods.
Step three, judge if si can be switched into the

sleep state in time period Tua
q . We notice that if two

conditions are satisfied then si can be switched into
the sleep state. First, Tua

q > T on + T off , where T on and
T off are the time required to turn on and off a 5G
BS once, respectively. Second, (Ea − Eua) · Tua

q > Eon +

Eoff . When both conditions Tua
q are satisfied, it is

reasonable and can reduce energy consumption for si to
switch to sleep state at time period Tua

q . Judge the rest of
the time period in T like this.

Step four, repeat the above operation for all other 5G
BSs.

Based on these discussions, we can get the offline
algorithm (OFFA) as shown in Algorithm 1. Step one
corresponds to lines 1–9 of the pseudocode in Algorithm 1,
step two corresponds to line 10 of the pseudocode, and step
three corresponds to lines 11–16 of the pseudocode.

4.2 Online strategy

For the online strategy, we only know tasks that have
been generated and are being generated. We should make
strategies based on this information in real-time. In this
subsection, we will first discuss the case where we need to
increase the active 5G BSs, and then we will discuss the
case where we need to decrease the active 5G BSs. After
that, we will give the steps of the online algorithm.

First, we determine the situation where we need to
increase an active 5G BS. Suppose that vehicles are evenly
distributed on the road. Since the coverage area of each
5G BS is the same, the number of vehicles in each
area can be regarded as the same. Since each vehicle
will generate a task within the scheduling time period T ,
the task will be generated with equal probability within
the coverage of each 5G BS. Denote k(t) as the total
number of tasks generated at time slot t. Denote kmax

as the maximum number of tasks that can be transmitted
to the 4G BS at the same time slot while satisfying the
time delay constraint. Then we have kmax·Dj

R4G +
kmax·Dj ·Cj

f ≤
Tmax
j . When both sides of the formula are equal, we can

get kmax = ⌊ Tmax
j ·R4G·f

Dj ·f+R4G·Dj ·Cj
⌋. Denote s(t) as the number

of 5G BSs in sleep state at time slot t. Denote a(t) as
the number of 5G BSs in active state at time slot t. So
we can use s(t)

n · k(t) to approximate the number of tasks
transmitted to the 4G BS at time slot t. We notice that if
s(t)
n · k(t) > kmax, the number of currently active 5G BSs is
not enough to match the number of tasks. Therefore, when
s(t) > 0 and k(t) > n

s(t) · k
max, we turn on a 5G BS in a

sleeping state.
Second, we determine the situation where we need to

decrease an active 5G BS. We notice that two conditions
need to be met. First, similar to the last paragraph, a(t) > 0
and k(t) < n

n−a(t)+1 · kmax. Because we need to ensure that
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after an active 5G BS is turned off, all tasks generated at
the current time slot still meet the delay constraint. Second,
the first condition has been maintained for a period of time,
which is at least the shortest time that a 5G BS is worth
sleeping. In this case it is reasonable to assume that the
decrease in the number of tasks is not episodic. From the
offline algorithm we can obtain the minimum time that a
5G BS is worth sleeping is Eon+Eoff

Ea−Eua . When both of these
conditions hold, we turn off an active 5G BS.

So the main idea for the online strategy can be
summarised into three steps as the following.

Step one, we first initialise all 5G BSs to be in sleep
state.

Step two, for time slot t = 1, tasks generated within
the range of an active 5G BS are transmitted to the
corresponding 5G BS, and tasks generated within the range
of an inactive 5G BS are transmitted to the 4G BS.
Determines whether the number of 5G BSs currently active
matches the number of current generated tasks. If the status
of the current time slot meets the condition of increase an
active 5G BS, then turn on a 5G BS in a sleeping state.
If the status of the current time slot meets the condition of
decrease an active 5G BS, then turn off an active 5G BS.
Otherwise, all 5G BSs remain in their current state.

Step three, repeat the above judgment operation until
t = h.

Based on these discussions, we can get the online
algorithm (ONA) as shown in Algorithm 2.

Algorithm 2 Online algorithm (ONA)
1: Initialisation;
2: Initialise all 5G BSs to sleep state;
3: End Initialisation;
4: for Time slot t ∈ [1, h] do
5: for si ∈ N do
6: if (αi(t) = 0) then
7: µj = 1(βi,j(tj) = 1, tj = t);
8: else
9: µj = 0(βi,j(tj) = 1, tj = t);
10: end if
11: end for
12: if (s(t) > 0 && k(t) > n

s(t)
· kmax) then

13: Turn on a 5G BS;
14: else if (a(t) > 0 && all values from k(t− Eon+Eoff

Ea−Eua ) to
k(t) are less than n

n−a(t)+1
· kmax) then

15: Turn off a 5G BS;
16: else
17: all 5G BSs remain in their current state;
18: end if
19: end for
20: Calculate the economic cost M total;

5 Simulation results

In this section, we conduct simulations and present
representative numerical results to evaluate the performance
of the proposed online algorithm. We first describe the
simulation setup and then discuss the simulation results.

In the simulation, we consider a one-way road with a
length of 800 metres. A 4G BS is deployed in the middle
of the roadside, and its coverage radius is 400 metres. Since
the coverage of 5G BS is generally 200–300 metres, we set
the number of 5G BSs to 3, that is, n = 3. We set the length
of a time slot τ = 1 s. The detailed parameters setting about
tasks and BSs is shown in Table 2.

5.1 Simulation setup

Table 2 Parameter settings

Description Value
Computing capability of edge server
(f )

300 M CPU/s

Maximum transmission rate between
vehicle and 4G BS/5G BS (R4G, R5G)

10 Mbit/s,
80 Mbit/s

Static energy consumed by an
active/inactive 5G BS in one time slot
(Ea, Eua)

3 kJ, 0.5 kJ

Switching time of 5G BS (T on, T off ) 5 s, 5 s
Switching energy of 5G BS
(Eon, Eoff )

40 kJ, 40 kJ

Data size of task (Dj) {0.2∼1 Mbit}
Processing density of task lj (Cj) {10∼20 M CPU

cycles/Mbit}
Maximum delay of task (Tmax

j ) 1 s
Static energy consumed by the 4G BS
in a time slot (E4G)

1 kJ

Efficiency of dynamic energy
consumption of BS (ζ)

0.1 kJ/Mbit

Money corresponding to each unit of
energy consumed by the BSs (ρ)

1.39 ∗ 10−4

Number of tasks (m) 441,000∼882,000

5.2 Simulation results

We consider the following schemes as benchmarks to
evaluate our proposed ONA scheme.

• Always-active (AA): Where all 5G BSs are always in
active state.

• Always-sleep (AS): Where all 5G BSs are always in
sleeping state.

• Random-switch (RS): Where all 5G BSs are turned on
and off randomly.

• Greedy-algorithm (GA): When reducing an active 5G
BS, only the first condition corresponding to the
online algorithm needs to be satisfied, and other parts
are the same as the online algorithm.

We first evaluate the performance of the proposed ONA
scheme in terms of task success rate. In our experiments,
we set T = 86,400 s, which means that the scheduling
time in our simulation is a whole day consisting of 86,400
time slots. We use a traffic flow dataset from a freeway
near Heathrow Airport in the UK as reference, and generate
tasks in proportion to the number of vehicles in the
corresponding time period. The task succeeds when the total
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delay of the task is less than or equal to the maximum
tolerable delay, otherwise the task fails. When a task fails,
that is, when the task is not completed within the maximum
tolerable delay, the corresponding edge server will stop
computing the task and directly calculate the next task in
the task queue.

Figure 2 shows the relationship between the task success
rate and the number of tasks when we set Dj = 0.8 M,
Cj = 12.5 M CPU cycles/Mbit. It can be seen that task
success rate of all schemes decrease with the increasing
of the number of tasks except the AA scheme and the
OFFA scheme. Because an increase in the total number of
tasks equates to faster task generation. This will increase
the burden on the BS, strain communication and computing
resources, and ultimately increase the possibility that the
total task delay exceeds the maximum tolerable delay. In
contrast, except for the AA scheme and the OFFA scheme,
the effectiveness of our ONA scheme is better than other
schemes.

Figure 2 The success rate of tasks under different number of
tasks (see online version for colours)
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Then, we evaluate the performance of the proposed ONA
scheme in reducing economic cost of the service operator.
Figure 3 shows the relationship between the economic cost
of the service operator and the number of tasks when
we set Dj = 0.8 M, Cj = 12.5 M CPU cycles/Mbit.
It can be seen that the economic cost of all schemes
increases with the number of tasks. In the RS scheme,
since all 5G BSs are switched randomly in any case,
the energy consumption does not change much. However,
due to the frequent state switching of 5G BSs under this
scheme, a large amount of switching energy consumption
will be generated (see Figure 4), which leads to the highest
economic cost compared with other schemes. In the AS
scheme, since all 5G BSs are in a sleep state in any case,
the economic cost required is the lowest. However, it can
be seen from the Figure 2 that the success rate of tasks
under the AS scheme is very low. Therefore, this scheme is

not effective. In the GA scheme, the switching of 5G BSs
is greatly affected by the occasional fluctuation of traffic
flow, which results in many very short sleep periods that
are not worthy of sleep for 5G BSs. This increases energy
consumption and causes many tasks to fail due to wrong
offload decisions. Therefore, the performance of the GA
scheme is not good enough in terms of improving task
success rate and reducing the economic cost. In contrast,
our ONA scheme performs well both in terms of improving
task success rate and reducing economic cost. Under the
condition of the same task success rate, the ONA scheme
is slightly weaker than the OFFA scheme in terms of
reducing economic costs, but it is significantly better than
other schemes. For example, when the number of tasks is
705,600, the economic cost is reduced by 8.47%–48.7%
compared to AA, RS and GA scheme.

Figure 3 The economic cost of the service operator under
different number of tasks (see online version
for colours)
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Figure 4 shows the proportion of each energy consumption
of the schemes mentioned in this paper when the number
of tasks is 705,600. We can intuitively see the composition
of energy consumption in each scheme. It can be seen
that, except for the RS scheme and the GA scheme, the
static energy consumption of other schemes accounts for
the largest part. In the RS scheme and the GA scheme,
due to the frequent switching of 5G BSs, switching energy
consumption accounts for the largest part.

To provide a more straightforward understanding, we
present in Figure 5 the proportion of tasks corresponding
to the two offloading decisions of the ONA scheme in
Figures 2 and 3. It can be seen that as the total number of
tasks increases, the proportion of tasks that are offloaded to
the 5G BSs increases. Because when the total number of
tasks increases, more tasks need to be offloaded to 5G BSs
to meet their delay constraints, so as to improve the success
rate of tasks.
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Figure 4 The proportion of each energy consumption under
different schemes (see online version for colours)
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Figure 5 The proportion of tasks corresponding to two
offloading decisions under different total number of
tasks (see online version for colours)
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Figure 6 shows the relationship between task success rate
and task data size when we set m = 705,600, Cj = 12.5 M
CPU cycles/Mbit. It can be seen that, except for the AA
scheme and the OFFA scheme, the task success rate of
all other schemes decreases as the task data size increases.
Because a larger data size requires more communication
resources, this increases the probability of task failure.
It can be seen that as the task data size increases, the
performance of our ONA scheme in improving the task
success rate does not drop too much. Compared with other
schemes, its advantages are still obvious.

Figure 7 shows the relationship between the economic
cost of the service operator and task data size when we set

m = 705,600, Cj = 12.5 M CPU cycles/Mbit. It can be seen
that the economic cost of all schemes increases with the
task data size. Although our ONA scheme performs slightly
worse than the GA scheme in reducing the economic cost
when the task data size is small, it is more stable and
effective in improving the task success rate.

Figure 6 The success rate of tasks under different task data
size (see online version for colours)
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Figure 7 The economic cost of the service operator under
different task data size (see online version
for colours)
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Figure 8 shows the relationship between task success rate
and task processing density when we set m = 705,600, Dj

= 0.8 M. It can be seen that, except for the AA scheme
and the OFFA scheme, the task success rate of all other
schemes decreases as the task processing density increases.
Because greater task processing density will increase the
processing time of the edge server, which increases the
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probability of task failure. It can be seen that as the task
processing density increases, the performance of our ONA
scheme in improving the task success rate does not drop
too much. Compared with other schemes, its advantages are
still obvious.

Figure 8 The success rate of tasks under different task
processing density (see online version for colours)
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Figure 9 The economic cost of the service operator under
different task processing density (see online version
for colours)
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Figure 9 shows the relationship between the economic cost
of the service operator and the task processing density
when we set m = 705,600, Dj = 0.8 M. It can be seen
that our ONA scheme performs very close to the OFFA
scheme in reducing the economic cost. Of course, at the
same economic cost, the OFFA scheme has a higher task
success rate than the ONA scheme, but compared with other
schemes, the ONA scheme has obvious advantages.

Based on the above analysis, it can be concluded that
our ONA scheme can significantly reduce the economic
cost of the service operator while achieving a high task
success rate.

6 Conclusions

In this paper, we have investigate the problem of
minimising the economic cost of VEC service operators,
and propose a new 4G-5G hybrid offload architecture that
combines the respective advantages of 4G BS and 5G
BS. Specifically, we first establish a mathematical model
which cannot be solved directly. Then we propose offline
algorithms that can be iteratively tuned to achieve 100%
success of the task. Considering the real-time requirements
of realistic scenarios, we also proposed corresponding
online algorithm. Finally, we use a real-world traffic flow
dataset to implement the simulation. Simulation results
show that our scheme significantly reduces the economic
cost while achieving a high task success rate. For example,
when the number of tasks is 705,600, the economic cost
is reduced by 8.47%–48.7% compared to AA, RS and GA
scheme.

In the future, we will further consider the case when
there are different types of tasks for offloading. Of course,
we also consider the case where tasks are allowed to be
partially offloaded.
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