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Abstract. Clustered Federated Learning (CFL) is a paradigm of Fed-
erated Learning (FL) that enhances model training accuracy and effi-
ciency by clustering clients with similar characteristics and training mod-
els within each cluster. However, the structural characteristics of CFL 
make it more susceptible to backdoor attacks, where the attacker embeds 
a malicious trigger in clean data and modifies the label to the target 
label, resulting in malicious outputs when the trigger is activated. To 
address this threat, this paper proposes a defense method combining 
trigger inversion and data augmentation. First, we conduct a compara-
tive analysis of the impact of backdoor attacks in FL and CFL, revealing 
that CFL is more susceptible to such attacks. Then, based on this anal-
ysis, the proposed defense method employs reverse engineering on the 
model compromised by a backdoor attack to detect trigger patterns and 
generate a potential trigger. This trigger is then applied to augment 
client data, neutralizing the effects of the malicious trigger. Experimen-
tal results demonstrate that the proposed defense method can reduce the 
attack success rate to nearly zero while maintaining high model accuracy, 
showcasing its robustness in defending against backdoor attacks. 

Keywords: Clustered federated learning · Backdoor attack · 
Backdoor defense · Trigger inversion · Data augmentation 

1 Introduction 

Clustered Federated Learning (CFL) is a type of Federated Learning (FL) [ 1, 2], 
which aggregates clients with similar features or data distributions into the same 
cluster and trains models independently within each cluster. This approach effec-
tively addresses the challenges posed by data heterogeneity [ 3, 4] in FL. Com-
pared to traditional FL, CFL enables independent model training within each 
cluster, allowing the model to align with the local data distribution, which in turn 
enhances personalization, training efficiency, and convergence speed [ 5]. However, 
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while enhancing model performance, the structure of CFL also introduces new 
security risks. Since model updates between clusters are independent, malicious 
clients are more likely to launch attacks within clusters, particularly data poi-
soning and backdoor attacks [ 6– 8]. These attacks are often highly destructive 
and can influence model updates in a way that is difficult to detect, thereby 
compromising the model’s overall performance. 

In recent years, significant progress has been made in the defense against 
backdoor attacks, with existing methods including differential privacy, gradi-
ent clipping [ 9, 10], model behavior-based detection [ 11], and anomaly detec-
tion [ 12, 13]. For instance, Sun et al. [ 14] mitigate backdoor attacks using weak 
differential privacy and gradient norm clipping, though at the cost of reduced 
model accuracy. Andreina et al. [ 15] proposed the introduction of feedback loops 
in federated learning, utilizing data from multiple clients to assess the authentic-
ity of model updates, thus effectively detecting and defending against backdoor 
attacks. However, this method cannot defend against backdoor attacks based on 
trigger insertion, and it is limited to detecting malicious models without cor-
recting or eliminating existing backdoor mechanisms. While these methods have 
shown some effectiveness in FL, they fail to address model contamination after 
aggregation or utilize the information from the contaminated models, making 
it difficult to eliminate the impact of malicious clients. In CFL, these meth-
ods have a more significant negative impact on model accuracy. Attackers can 
manipulate a small number of malicious clients to achieve high attack success 
rates while maintaining relatively high model accuracy. Therefore, addressing 
backdoor attacks in CFL has become a critical challenge in current research. 

We compare the performance of backdoor attacks in CFL and FL. The exper-
imental results show that the success rate of backdoor attacks in CFL is approx-
imately 62.89% higher than in FL, indicating that the clustering mechanism 
in CFL enhances the persistence and effectiveness of these attacks. Therefore, 
we propose a defense method combining trigger inversion and data augmenta-
tion to mitigate backdoor attacks in CFL. The experimental results validate 
the effectiveness and robustness of the proposed defense method under different 
poisoning rates. On both the MNIST and EMNIST datasets, the defense signif-
icantly reduces the backdoor attack success rate to near zero at all poisoning 
rates, while maintaining stable model accuracy. 

The main contributions of this paper are summarized as follows: 

• We demonstrate that CFL is more vulnerable to backdoor attacks than FL. 
• We propose a defense mechanism against backdoor attacks that combines 

trigger inversion with client data augmentation. 
• Through experiments, we demonstrate that our defense method is more effec-

tive in mitigating backdoor attacks in CFL compared to other methods. 

The structure of the paper is as follows. Section 2 presents the problem formu-
lation and attack description. Section 3 introduces the defense method. Section 4 
details the experimental setup and analyzes the results related to both the attack 
and defense. Finally, Sect. 5 concludes the paper and discusses future research 
directions.
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2 Problem Formulation and Attack Description 

Consider a Clustered Federated Learning (CFL) scenario, as illustrated in 
Fig. 1, consisting of a central parameter server and multiple clients with Non-
Independent and Identically Distributed (Non-IID) data. Assume that the clients 
can be divided into n clusters based on their data distributions, where Di 

(i = 1, . . . , n) represents the set of clients sharing the same data distribution. 
The notations used in the paper are summarized in Table 1. 

Fig. 1. Threat model. 

In our threat model, we assume that the clustering process has been com-
pleted, and one local client is maliciously controlled by an attacker to perform 
a backdoor attack in CFL. The attacker manipulates the model by injecting 
poisoned samples during local training. The goal of the attack is to implant 
a backdoor into the model, causing it to make predefined incorrect predictions 
when encountering samples with the trigger, while maintaining high accuracy on 
benign samples. Since the global server cannot distinguish between trusted and 
malicious clients, the attacker’s malicious behavior may be incorporated into 
the model, leading to erroneous predictions under specific trigger conditions. 
Specifically, the attack process can be divided into the following steps: 

1. Generating poisoned samples: The malicious client controlled by the 
attacker modifies a portion of the client’s benign samples according to the 
poisoning rate r, embeds a trigger, and changes their labels to the target 
label, thereby generating poisoned samples. 

2. Training with poisoned data: The malicious client incorporates the poi-
soned samples into the local training process to update the model.
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Table 1. Glossary of notations. 

Notation Description 
α The Dirichlet distribution parameter controlling the non-IID level 
w0 The initial cluster model weights before defense 
Wr The cluster model weights at round r 
η The learning rate (step size) for model updates 
xaug The augmented sample with the trigger applied 
τ Gradient update threshold for model updates 
m The mask indicating the regions where the trigger is applied 
δ The perturbation representing the trigger pattern updated during the optimization process 
r The poisoning rate of malicious client data 

3 Defense 

3.1 Defense Model 

Fig. 2. Defence framework. 

To address backdoor attacks in CFL, we propose a defense method that com-
bines trigger inversion and data augmentation. The entire defense process is 
illustrated in Fig. 2. Backdoor attacks typically lead to abnormal model updates, 
so we monitor the parameter updates of each neural network layer in the server-
side clustered model during each training round to identify potential anomalies. 
When a model update deviates from the expected range, it may indicate that 
the model has been affected by a backdoor attack, thus activating the defense 
mechanism. 

Once an anomaly is detected, we initiate defense measures, including trig-
ger inversion and data augmentation. The core idea of trigger inversion is to
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analyze the behavior of the attacked model, reverse-engineer the malicious pat-
terns embedded by the attacker in the data, and generate a trigger. This trigger 
reveals the malicious features introduced by the attacker and can interfere with 
the attacker’s strategy. The generated trigger is then applied to the datasets of 
the clients, enhancing their ability to identify and resist backdoor attacks dur-
ing training. Algorithm 1 outlines the implementation process of this defense 
method. 

Algorithm 1. Defense method 
Input: total training round R, local  dataset  D : {x, y}, clients K 
1: initialize learning rate η, gradient update threshold τ , initial model parameters wi 

2: for each training round r ∈ [1, R] do 
3: for each client k in K do 
4: Client k does: 
5: wk 

r+1 ←− Local_Update (wr, Dk, mask, pattern) 
6: end for 
7: Server does: 
8: Clustering: Calculate weight similarity. The clients are divided into two parts 
9: using the aggregation hierarchical clustering algorithm; 

10: wr+1 ← η
∑N 

k=1w
k 
r+1 � The server aggregates weights from clients in the 

cluster. 
11: if ∃l,

∥
∥
∥Δw (l) r+1

∥
∥
∥ > τ  then � Check if the gradient update for layer l is abnormal. 

12: mask, pattern ←− Trigger_Inversion (wr+1) � Generate a trigger through 
inversion based on the poisoned model. 

13: end if 
14: wr+1, mask, pattern −→ clients Kcluster � Distribute updated model param-

eters, trigger mask, and pattern to the clients in the cluster. 
15: end for 
16: function Local_Update(wr, Dk, mask, pattern) 
17: if mask is N ull then 
18: wk 

r+1 ←− Local_Model_Train(x, y) 
19: else 
20: xaug = (1  − mask) · x + mask · pattern 
21: wk 

r+1 ←− Data_Augmentation_Train (xaug, y) � Training on augmented 
data without changing the ground truth labels. 

22: end if 
23: end function 

3.2 Trigger Inversion 

In this section, we provide a detailed discussion on the principles, implementation 
steps, and application of trigger inversion in the context of CFL. Trigger inversion 
is an effective technique for detecting backdoor attacks by performing reverse 
optimization on the attacked model to derive the malicious triggers implanted 
by the attacker. The core idea is to generate triggers corresponding to each label
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through the inversion process, thereby revealing potential malicious patterns. 
Since backdoor attacks typically involve making subtle modifications to the input 
data, causing misclassification to the target label, the modification needed for 
misclassification to the target label is significantly smaller than that required for 
other unaffected labels. Trigger inversion leverages this characteristic to detect 
the model’s sensitivity to input, thus identifying potential backdoor attacks. 

Trigger Generation. In this phase, we first randomly initialize the trigger 
image or mask m, typically using random values or a zero image as the initial 
state. Next, we adopt a reverse optimization strategy to iteratively update the 
perturbation value δ of the trigger, guiding the model’s output toward the spec-
ified target label. For this purpose, we use the following formula to iteratively 
optimize the input data: 

xs→t = (1  − m) · xs + m · δ (1) 

where xs represents the original input data, m is the mask that controls the 
degree of the trigger’s application, δ is the perturbation value of the trigger 
updated during optimization, and xs→t denotes the modified input after transi-
tioning from state s to target state t. To evaluate the model’s performance, we 
define the following loss function: 

Loss = L(F (xs→t), yt) +  λ · ‖m‖ (2) 

where L(·) represents the loss function, F (xs→t) is the model’s output after 
applying the trigger to the modified input xs→t, yt is the target label, λ is a 
hyperparameter used to balance the contribution of the regularization term, and
‖m‖ is the L1 norm of the mask m, which is used to constrain the complexity 
of the mask. By minimizing the target loss function, we iteratively optimize the 
perturbation value δ so that the input xs→t is misclassified as the target label yt 
after applying the trigger. Figure 3 illustrates the process of trigger generation. 

Fig. 3. Trigger generation. 

Through this reverse optimization process, we can effectively infer the orig-
inal trigger that the attacker may have used. This method not only enhances 
the detection capability against potential backdoor attacks but also provides 
theoretical support for designing more targeted defense strategies. Algorithm 2 
illustrates the implementation process of trigger inversion.
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Algorithm 2. Trigger inversion 
Input: global model parameters Wr, the classes of image classification C 
Output: mask, pattern 
1: initialize the maximum number of iterations T = 1000 
2: function Trigger_Inversion(wr) 
3: for each class c in C do 
4: mc, δc ←− random init with shape of x 
5: for each step ∈ [1, T  ] do 
6: xaug = (1  − mc) · x + mc · δc 
7: Evaluate the recognition performance or calculate the loss for Wr, xaug, 
8: and c. 
9: Perform appropriate scaling on mc and δc � Enhance numerical stability 

or adjust the mask’s range to a specific interval. 
10: end for 
11: Add mc, δc to set S 
12: end for 
13: Select optimal mopt, δopt from set S based on MAD.  
14: return mopt, δopt 
15: end function 

Anomaly Detection. We apply the aforementioned optimization method to 
reverse-engineer triggers for each poisoned label and compute their L1 norms. 
Next, we identify triggers that appear as outliers in the distribution, which typ-
ically have smaller L1 norms. 

After generating the triggers, we use the Median Absolute Deviation (MAD) 
method for anomaly detection to identify potential outliers in the model’s out-
put, which may indicate contamination. Specifically, we first compute the median 
of the model’s outputs, then calculate the absolute deviation of each output 
from the median, and ultimately obtain the MAD value. Since the perturba-
tion required to misclassify an input as a poisoned label is generally smaller 
than the perturbation needed to misclassify it as any other unaffected label, the 
anomalous triggers tend to be located at the lower end of the distribution. 

3.3 Data Augmentation 

Fig. 4. (a) is the truth trigger, (b) is the poisoned data from the malicious client, and 
(c) is the augmented data after trigger inversion. 

The data augmentation training process involves several key steps. First, after 
receiving the trigger sent by the server, the client applies it to the benign
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data, making appropriate modifications while ensuring that the labels remain 
unchanged to guarantee the effectiveness of the training. Next, the client uses the 
modified data for data augmentation training, aiming to counteract the impact 
of backdoor attacks and improve the model’s robustness. By learning from these 
augmented samples, the model gradually enhances its ability to recognize and 
defend against potential attacks. After the training is complete, the client sends 
the updated model parameters back to the server, which is responsible for final 
evaluation and optimization to verify the effectiveness of the adversarial training. 
This training significantly strengthens the system’s ability to handle potential 
backdoor attacks, improving both the performance and security of the model. 
Figure 4 shows the poisoned data and the augmented data. 

4 Experiments 
4.1 Experiment Setup 

We use a Convolutional Neural Network (CNN) model for both the MNIST 
and EMNIST datasets. The input size of the model is 28 × 28, with the MNIST 
dataset outputting 10 classes and the EMNIST dataset outputting 62 classes. 
The network consists of two convolutional layers and two fully connected layers. 
The convolutional layers use 5 × 5 kernels with a stride of 1, followed by max-
pooling layers for dimensionality reduction. The fully connected layers map the 
features to 500 neurons, with the final output corresponding to the classification 
results. The activation function used throughout the network is ReLU, and the 
output layer applies log Softmax normalization for multi-class classification. 

The experiment is conducted using the PyTorch framework. We create a 
non-IID dataset by applying a Dirichlet distribution (α = 0.5) to the data, 
distribute it across 100 clients, and select 10 clients for the experiment, one of 
which is controlled by an attacker. In the attack setup, the SGD optimizer is 
used for training, and a backdoor attack is performed in a specific round. The 
learning rate for the backdoor attack is set to 0.05, while the learning rate for 
normal training is η = 0.1, with a batch size of 64. Higher poisoning rates can 
prevent the model from converging, so we use commonly adopted parameter 
settings of r = 10%, 20%, and 30%. In the defense setup, the Adam optimizer is 
used for reverse engineering to generate the trigger. The value of τ = 1.0 and the 
parameters of the pre-trained model wi = w10 (for MNIST) and wi = w200 (for 
EMNIST) are set in Algorithm 1. The experiment is run on a server equipped 
with an NVIDIA V100 (16 GB) GPU. 

Evaluation Metrics. We use Attack Success Rate (ASR) and Main Task Accu-
racy (ACC) as evaluation metrics to measure the effectiveness of the defense. 
1) Attack Success Rate (ASR): This metric measures the proportion of backdoor 

task samples with a trigger that are misclassified as as the attack’s target 
label. 

2) Main Task Accuracy (ACC): This metric indicates the proportion of benign 
samples correctly classified to their true labels.
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4.2 Attack Result Analysis 

Our research demonstrates that backdoor attacks in CFL pose a greater threat 
compared to FL. This increased threat can be attributed to the unique client 
clustering mechanism in CFL, which provides attackers with more favorable 
conditions for executing their attacks. Compared to FL, CFL achieves better 
attack performance with the same or even lower poisoning rates. 

In the experiments conducted on the MNIST and EMNIST datasets, we com-
pare the performance of FL and CFL in backdoor attacks. The corresponding 
experimental results are shown in Figs. 5 and 6. The backdoor attack is per-
formed in the 18th round of the MNIST dataset and the 208th round of the 
EMNIST dataset. At a poisoning rate of 30%, the ASR in CFL is 33.27% higher 
than in FL on the MNIST dataset, and 62.89% higher on the EMNIST dataset. 
Furthermore, in the CFL scenario, the attacker can achieve the same or even 
higher attack success rates than in FL, even at lower poisoning rates. 

Fig. 5. Comparison of ASR and ACC between CFL and FL for MNIST. 

Fig. 6. Comparison of ASR and ACC between CFL and FL for EMNIST. 

Overall, the clustering mechanism in CFL enhances the persistence of back-
door attacks across both datasets, demonstrating a stronger attack effect, while 
the global aggregation strategy in FL somewhat mitigates the impact of these 
attacks.
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4.3 Defense Result Analysis 

We conduct defense experiments based on the backdoor attack scenario in CFL 
described in Sect. 4.2. Figures 7 and 8 show ACC and ASR of the backdoor 
task under different poisoning rates with and without defense measures on the 
MNIST and EMNIST datasets. Table 2 summarizes the baseline results under 
various poisoning rates for each dataset, comparing the model performance with 
and without defense. On the MNIST dataset, without any defense, the ASR sig-
nificantly increases as the poisoning rate of the malicious client rises, reaching 
98.62% at a 30% poisoning rate, while the ACC slightly drops to 94.80%. On the 
EMNIST dataset, the ASR reaches 86.09% when the poisoning rate increases to 
30%. However, with the defense method in place, the ASR for both datasets 
remains close to zero at all poisoning rates, indicating that the defense method 
effectively mitigates backdoor attacks. Meanwhile, the ACC for both MNIST and 
EMNIST remains stable, reaching a maximum of 95.83% and 72.10%, respec-
tively. These results demonstrate the outstanding effectiveness and robustness 
of the proposed defense method across different poisoning rates. 

Fig. 7. Comparison of ASR and ACC for MNIST in the CFL scenario at different 
poisoning rates with and without defense. 

Fig. 8. Comparison of ASR and ACC for EMNIST in the CFL scenario at different 
poisoning rates with and without defense. 

To provide a clearer comparison, the Differential Privacy (DP) method adds 
Gaussian noise to each client’s update, reducing the impact of malicious updates
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while preserving the model’s overall performance. In contrast, Clipped Differen-
tial Privacy Defense (CDPD) [ 14] mitigates the impact of malicious updates 
by clipping updates from malicious clients and adding Gaussian noise, thereby 
preventing backdoor attacks from compromising the model. 

Table 2. Performance comparison under different poisoning ratios. 

CFL Scenario MNIST EMNIST 
ACC ASR ACC ASR 

No Defense r = 10% 96.26 65.34 72.06 5.23 
r = 20% 95.73 95.16 72.12 53.14 
r = 30% 94.80 98.62 72.73 86.09 

Defense r = 10% 95.83 0.63 72.10 0.06 
r = 20% 95.67 0.51 71.65 0.08 
r = 30% 95.14 0.36 71.52 0.08 

According to the experimental results in Table 3, our defense method shows 
significant results on both the MNIST and EMNIST datasets. On the MNIST 
dataset, the ASR of the backdoor attack drops to 0.36%, while the accuracy 
increases to 95.14%. On the EMNIST dataset, the ASR drops to 0.08%, and 
the accuracy remains at 71.52%. Compared to other defense methods, such as 
DP and CDPD, the proposed method not only significantly reduces the ASR 
but also demonstrates the stronger defense capability while maintaining high 
accuracy, thereby confirming its superiority. 

Table 3. Comparison of defense strategy effectiveness in the CFL scenario. 

Baselines MNIST EMNIST 
ACC ASR ACC ASR 

No Defense 94.80 98.62 72.73 86.09 
DP 92.50 63.55 65.95 77.25 
CDPD 95.52 2.58 65.85 0.38 
Ours 95.14 0.36 71.52 0.08
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5 Conclusion 

This study reveals the vulnerabilities of CFL to backdoor attacks, highlighting 
that CFL faces greater security risks compared to FL. Through theoretical anal-
ysis and experimental validation, we find that the client clustering mechanism 
in CFL creates favorable conditions for attackers, thereby increasing the success 
rate of backdoor attacks. To address this issue, we propose a defense method 
based on trigger inversion and data augmentation, which effectively identifies and 
mitigates malicious inputs, significantly enhancing the security and robustness 
of CFL. Our research emphasizes the necessity of developing effective defense 
strategies and provides valuable insights for future security research in CFL. 
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