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Abstract. Clustered Federated Learning (CFL) effectively addresses 
the challenge of data heterogeneity in Federated Learning (FL), where 
clients often hold Non-IID (Non-Independent and Non-Identically Dis-
tributed) data, typically limited to a few categories. However, the 
updates of the cluster models in CFL inadvertently expose additional 
information, rendering it vulnerable to Category Inference Attack (CIA), 
where the attacker exploits this exposure to infer sensitive category infor-
mation from these updates. In our experiments on the image classifica-
tion datasets, the attacker consistently achieves the F1-score exceeding 
.90% across various scenarios, highlighting CFL’s vulnerability to CIA 
and the urgent need for robust privacy protections. To defend against this 
attack, we propose an adaptive local differential privacy (LDP) strategy 
for CFL, named AFC-CFL (Adaptive Fisher Information and Dynamic 
Clipping Threshold in CFL). AFC-CFL adopts adaptive Fisher infor-
mation to adjust the privacy budget and dynamically modifies the clip-
ping threshold during model training, mitigating the noise’s effect on 
model performance while ensuring strong privacy protection. Experi-
ments demonstrate that AFC-CFL significantly reduces the impact of 
noise on model accuracy, achieving a maximum accuracy improvement 
of .32.8% compared to common LDP method. Additionally, AFC-CFL 
reduces the attacker’s F1-score by up to .24.3%, achieving a superior 
trade-off between model performance and privacy protection, making it 
highly suitable for deployment in privacy-sensitive CFL scenarios. 

Keywords: Cluster federated learning · Category inference attack · 
Local differential privacy 

1 Introduction 

Clustered Federated Learning (CFL) [ 1] optimizes Federated Learning (FL) [ 2– 4] 
by mitigating the impact of data heterogeneity through client clustering. How-
ever, despite only sharing model updates, CFL remains vulnerable to inference 
attacks [ 5, 6] and backdoor attacks [ 7] that manipulate model behavior. 
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This paper focuses on category inference attacks (CIA) in CFL, where an 
attacker utilizes cluster similarity to deduce category information, posing seri-
ous privacy concerns. The clustering process further increases privacy risks by 
grouping clients with similar data, making it easier for attackers to infer cate-
gory information. Our experiments show that the F1 score of CIA can exceed 
90%. This indicates that an attacker can successfully infer the category infor-
mation of individual clusters. 

To defend against this attack, we propose an adaptive local differential pri-
vacy (LDP) [ 8– 10] method for CFL, named Adaptive Fisher Information and 
Dynamic Clipping Threshold in CFL (AFC-CFL). AFC-CFL applies noise based 
on Fisher information to minimize accuracy loss and uses dynamic gradient clip-
ping to handle parameter variations. 

We validate AFC-CFL through experiments on MNIST, EMNIST, and 
CIFAR-10. Results show that our method significantly reduces the attacker’s 
effectiveness while improving model accuracy compared to common LDP. This 
demonstrates AFC-CFL’s ability to enhance privacy protection while maintain-
ing strong model performance. 

Our contributions are as follows: 

• We analyze the CIA in CFL and reveal that attacker can infer category infor-
mation with high F1-score, representing a significant privacy threat. 

• We propose an adaptive LDP strategy that utilizes the Fisher information 
matrix to guide noise addition and employs a dynamic clipping threshold 
strategy to determine suitable clipping thresholds for each client. 

• We validate our defense method through experiments in the image classifi-
cation tasks, showing that our defense method achieves a superior balance 
between privacy protection and model accuracy. 

2 Category Inference Attack in CFL 

2.1 Threat Model 

This section we first introduce the threat model. Figure 1 illustrates the CIA 
method within the CFL framework. The CFL algorithm is divided into the 
following three steps: 1) The server distributes all cluster models to clients. 
2) Each client determines cluster . i by selecting the cluster model with the lowest 
loss, updates its parameters, and uploads the updated parameters to the server. 
3) The server aggregates the uploaded parameters based on the clients’ cluster. 

In this CFL scenario, a central server collaborates with .N clients to train 
.P cluster models. Each client has a local dataset that may include multiple 
categories, and the number of categories in each cluster, comprising one or more 
clients, is denoted as .Xj , where .j ∈ [P ] and .Xj ≥ 1. 

Within this threat model, we assume that one of the clients acts as an 
attacker. The attacker’s objective is to accurately infer the category information 
contained within each cluster. The attacker is assumed to be honest-but-curious,
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Fig. 1. Threat Model. 

meaning it follows to the CFL protocol while actively attempting to extract addi-
tional information. Consequently, the attacker has access to all cluster models 
during each communication round. 

Given that each cluster may include multiple categories .(Xj ≥ 1), the  
attacker trains a multi-label inference model for each cluster to achieve its 
objective. To train these multi-label inference models, the attacker collects task-
relevant data from public sources to construct auxiliary datasets .Daux. The  
training process for the inference models involves three key steps, which are 
detailed in the subsequent subsection. 

2.2 Attack Method 

In this subsection, we describe the three steps an attacker follows to train the 
multi-label inference model: 1) Preprocess the auxiliary dataset: The attacker 
samples multiple subsets from the auxiliary dataset .Daux, constructing binary 
category labels .laux to indicate the presence of specific categories. Repeating 
this process generates a dataset .Df for training the inference model. 2) Generate 
intermediate datasets: The attacker simulates the CFL process by evaluating the 
loss of each subset .daux on cluster models .wt

j to determine its cluster. It then com-
putes parameter updates .Δi,aux and aggregates them into cluster-specific sets 
.Gi,aux, forming intermediate training data. 3) Train the inference model: The 
attacker selects and aggregates parameter updates from .Gi,aux, combining their 
labels via logical OR operations to generate the final training dataset .Aj,aux. 
This dataset is used to train CIA models .Mj for each cluster, enabling category 
inference from model updates. 

Algorithm 1 outlines the framework for executing the three CIA processes. 
By using the difference between cluster model parameters from rounds . t and 
.t+1 (.�wj = wt+1

j −wt
j , j ∈ [P ]), the attacker uses the trained inference models 

to infer the category information for each cluster in round . t, effectively revealing 
sensitive category-related information.
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Algorithm 1. Category Inference Attack Models Training Algorithm 
Input: Auxiliary dataset .Daux, Number of clusters . P , Local learning rate . η
Output: CIA Models . Mj , j ∈ [P ]
1: Initialize .Df , . Gj,aux, Aj,aux, j ∈ [P ]
2: while .|Df | not big enough do 
3: .daux = Random sampling with replacement from . Daux

4: .laux = Categories associated with the dataset . daux

5: . Df = Df ∪ (daux, laux)
6: end while 
7: Store all cluster models .wt

j , .j ∈ [P ] in .t-th round 
8: for (.daux, laux) in enumerate .Df do 
9: cluster identity estimate . i = arg minj∈[P ] ∇F (wt

j , daux)
10: .Δi,aux = wt

i - . η∇F (wt
i , daux)

11: . Gi,aux = Gi,aux ∪ (Δi,aux, laux)
12: end for 
13: while .|Aj,aux| not big enough do 
14: .aj,aux = the simulated aggregated updates from . Gj,aux

15: .Laux = simultaneously merged .laux by logic OR operation. 
16: . Aj,aux = Aj,aux ∪ (aj,aux, Laux)
17: end while 
18: Train the inference model .Mj with . Aj,aux

19: return . Mj , j ∈ [P ]

3 Adaptive Defense Method 

In this section, we propose an innovative adaptive local differential privacy (LDP) 
defense strategy, called AFC-CFL (Adaptive Fisher Information and Dynamic 
Clipping Threshold in CFL), to reduce the threat of CIA in CFL. 

Common local differential privacy methods typically apply the same amount 
of noise to each parameter. However, since each parameter has a different impact 
on model accuracy, adding the same amount of noise to all parameters can 
significantly degrade model performance. Additionally, using a fixed clipping 
threshold to limit the norm of the gradients may not be suitable for all clients, 
as different clients may have varying data distributions. Therefore, to address 
these challenges, we design an adaptive local differential privacy method called 
AFC-CFL based on LDP. 

Firstly, to address the issue of significant accuracy degradation caused by 
adding the same noise to all parameters, we draw inspiration from the Fisher 
information matrix. By calculating the Fisher information for each parameter, 
we can determine the amount of information each parameter contains. Param-
eters with a larger amount of information have a greater impact on the model 
performance and clustering results. Consequently, we add less noise to param-
eters with higher Fisher information to minimize the impact of noise on model 
accuracy, while adding more noise to less informative parameters to enhance 
privacy protection.
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For a client . n with a private dataset .Dn, where the model parameters trained 
in a particular round are denoted by .wn = {wn,1, wn,2, . . . , wn,K} (with .K being 
the total number of parameters), the Fisher information .In,k for each parameter 
.wn,k is calculated as: 

.In,k = E

[(
∂ log L(wn;Dn)

∂wn,k

)2
]

. (1) 

Here, .L(wn;Dn) is the likelihood function of the data .Dn given the parameter 
.wn. The Fisher information values are normalized using min-max normalization, 
as follows: 

.În,k =
In,k − min

k
{In,k}

max
k

{In,k} − min
k

{In,k} . (2) 

To adaptively adjust the privacy budget for each parameter, we intro-
duce the privacy budget ratio .αk. The privacy budget ratio is calculated as 
.αk = β − În,k, where . β is a hyperparameter to control the overall privacy bud-
get adjustment range. The privacy budget for each parameter is modified to 
.εk = ε/αk. This dynamically adjusts the privacy budget for each parameter 
by calculating Fisher information value, which influences the noise magnitude 
applied to each parameter, thereby reducing the noise’s impact on the model. 

Second, due to the Non-IID nature of client data, gradient updates can vary 
significantly across clients, making a fixed gradient clipping threshold unsuitable 
for all. To address this, the client . n dynamically determines its clipping threshold 
.Ct

n by selecting the .p-th percentile of its historical gradient .L2-norm values. 
Specifically, this is represented as .Ct

n = Percentilep[G0
n, G1

n, . . . , Gt
n], where . Gt

n

denotes the .L2-norm of the gradients at round . t. This method allows each client 
to adaptively adjust its clipping threshold based on historical gradient statistics, 
ensuring the threshold aligns with its specific data distribution and gradient 
characteristics. 

Overall, we combined the above two strategies to design the AFC-CFL algo-
rithm, a comprehensive defense strategy against CIA in CFL environments. The 
entire process is outlined in Algorithm 2. In each training round, the server 
broadcasts all cluster models to the client for local training. The client then 
follows the steps below to execute the AFC-CFL algorithm and ensure the effec-
tiveness of the adaptive defense strategy. First, the client determines its cluster . i
by selecting the cluster model with the lowest loss and updates its corresponding 
parameters. Next, the client computes the .L2-norm of the gradient and uses the 
dynamic clipping threshold strategy to update the clipping threshold, which is 
used to clip the gradient. In addition, the client computes the Fisher information 
for each parameter, calculates the privacy budget ratio, and modifies the privacy 
budget for each parameter. 

The Gaussian Mechanism is applied to add random noise to the model param-
eters, following .N (0, (Δf)2σ2

kI) distribution, where .Δf is the sensitivity, which 
is calculated as .2ηC/|b|, with . η is the learning rate, .C is the current gradient
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Algorithm 2. AFC-CFL 
Input: Number of clusters . P , Number of clients .N , Local learning rate . η, Global round 

. T , Private dataset . D, Initialization .w0
j , .j ∈ [P ], Privacy budget . ε, Percentage of 

clip . p, Adjustment of noise parameter . β
Output: All cluster models .wT

j , . j ∈ [P ]
1: for each global round t = 0, 1, 2,..., .T -1 do 
2: Server: Broadcast .wt

j , .j ∈ [P ] to all clients 
3: for each client n .∈ N in parallel do do 
4: cluster identity estimate . i = arg minj∈[P ] Fn(wt

j)
5: mini-batch .bn sampled from . Dn

6: Compute the gradient .gt
n,x = ∇F (wt

i , x), where  . x ∈ {1, ..., |bn|}
7: Calculate the local gradient paradigm . Gt

n = 1
|bn|

∑
x∈bn

‖gt
n,x‖2

8: Change clipping threshold . Ct
n = [G0

n, G1
n, , , Gt

n]p

9: gradient clipping . gt
n = 1

|bn|
∑

x∈bn
gt
n,x/max(1,

‖gtn,x‖2

Ct
n

)

10: Calculate fisher information .În,k by Eq. 1 and Eq. 2
11: Privacy budget ratio . αk = β − În,k

12: Change each parameter’s privacy budget . εk = ε/αk

13: Update the model parameter .wt+1
n = . wt

i − ηgt
n

14: Add noise for each parameter . w̃t+1
n,k = wt+1

n,k + N (0, (Δf)2σ2
kI)

15: Send .w̃t+1
n to Server 

16: end for 
17: Server: Aggregate parameters by clients’s cluster identity estimates. 
18: end for 
19: return .wT

j , . j ∈ [P ]

clipping threshold, and .|b| is the size of the batch data . b. For each parameter . k, 
the noise parameter .σk is given by Eq. 3: 

.σk =
1
εk

√
2 ln(

1.25
δ

). (3) 

Here, .εk represents the privacy budget for each parameter, adjusted based on 
Fisher information, and . δ refers to adjacent failure probability. At last, the noise 
of the appropriate scale size is added to the updated parameters, which are 
then sent to the server. With this adaptive defense, AFC-CFL effectively reduces 
the F1-score of CIA, thus enhancing the privacy protection in CFL while main-
taining model performance. 

4 Experiments 

4.1 Experimental Settings 

Datasets and Models. We evaluate our method on three widely used datasets: 
MNIST, EMNIST, and CIFAR-10. To simulate a realistic CFL, we adopt a Non-
IID data partitioning scheme similar to [ 2]. The datasets are divided into sorted 
shards, with each client assigned two shards. This ensures that each client has
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data from only a limited number of categories. For the MNIST and EMNIST 
datasets, we utilize the Fully Connected Neural Network model, consisting of two 
fully connected layers activated with Leaky ReLU. In contrast, for the CIFAR-
10 dataset, we employ the Convolutional Neural Network model featuring two 
convolutional layers followed by three fully connected layers, all activated with 
Leaky ReLU. 

Experiment Setup. Each client updates its local model parameters using SGD 
(Stochastic Gradient Descent) and honestly uploads the updated parameters 
to the server. For MNIST and EMNIST, the learning rate is .η = 0.1, and the 
model is trained for .T = 100 rounds. And for CIFAR-10, the learning rate is 
.η = 0.05, with a total of .T = 200 training rounds. The batchsize for MNIST and 
EMNIST is set to 600, and for CIFAR-10, the batch size is set to 100. In the 
attack experiments, we evaluate the impact of varying the number of clusters 
and the number of clients on the effectiveness of attacks. The auxiliary dataset 
comprises approximately .3% to .5% of the training dataset. To train the infer-
ence model, the attacker samples .γ = 10, 000 small independent datasets. For 
the defense experiments, we fix the setting where the total number of clients par-
ticipating in the global training process is .N = 10, divided into .P = 2 clusters. 
The value of the hyperparameter . β is set to 1.3. Additionally, the adaptive clip-
ping ratio . p is fixed at .70%, and  . δ is set to .10−5. All experiments are performed 
using PyTorch on an NVidia RTX A10 (24 GB) server. 

Metrics. We evaluate the attack’s accuracy and the defense’s effectiveness using 
precision, recall, and F1-score. To calculate these metrics, we randomly select 
certain training rounds and calculate the mean precision (. p̄) and mean recall (. r̄) 
across all clusters. The F1-score is calculated as follows: 

.F =
2p̄r̄

p̄ + r̄
. (4) 

4.2 Attack Result Analysis 

The experimental results summarized in Table 1 clearly underscore the robust-
ness of CIA in CFL scenarios. The attack consistently achieves high F1-score 
across the MNIST, EMNIST, and CIFAR-10 datasets, exceeding .90% in all 
tested configurations. This highlights the effectiveness of CIA in inferring cat-
egory information under varying numbers of clients and clusters. The results 
further demonstrate the versatility of the attack method, proving its capability 
to operate effectively across different data distribution scenarios. 

Notably, the attack’s performance is influenced by the distribution of cate-
gories among cluster models. In scenarios with minimal or no category overlap 
between cluster models, the F1-score are significantly higher. As the category 
overlap decreases, the loss differences between clusters for a given small dataset
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Table 1. The Attack Metrics 

Dataset Clusters .P Clients .N Precision Recall F1-score 
MNIST 2 10 0.985 0.894 0.937 

15 0.999 0.886 0.939 
20 0.992 0.873 0.929 

3 15 0.976 0.867 0.918 
20 0.989 0.846 0.912 

CIFAR-10 2 10 0.942 0.982 0.962 
15 0.984 0.921 0.951 
20 0.920 0.964 0.941 

3 15 0.946 0.869 0.906 
20 0.868 0.963 0.913 

EMNIST 2 10 0.930 0.979 0.954 
15 0.965 0.914 0.939 
20 0.956 0.957 0.956 

3 15 0.883 0.937 0.909 
20 0.874 0.939 0.905 

become more pronounced, making it easier to discern the category informa-
tion associated with each cluster. For instance, under low category overlap, the 
F1-score on CIFAR-10 reaches up to .96.2% compared to .90.6% when overlap is 
high. Overall, the experimental results emphasize the need for enhanced privacy-
preserving mechanisms in CFL to mitigate the risks posed by such inference 
attacks. 

4.3 Defense Result Analysis 

Fig. 2. Comparison of the model accuracy in CFL between non-defense, common LDP, 
ADP and our AFC-CFL. 

We conducted defense experiments in the attack scenarios described in Sect. 4.2, 
ensuring the same number of attack rounds for each scenario in the sim-
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Table 2. The Attack Metrics and Model Accuracy in Various Scenarios 

Scenario Precision Recall F1-score Model Accuracy 
MNIST with non-defense 0.985 0.894 0.937 0.913 
MNIST with common LDP 0.940 0.669 0.782 0.708 
MNIST with ADP [ 9] 0.923 0.757 0.832 0.767 
MNIST with AFC-CFL(Ours) 0.914 0.669 .0.773 . 0.790

CIFAR-10 with non-defense 0.942 0.982 0.962 0.713 
CIFAR-10 with common LDP 0.814 0.834 0.824 0.387 
CIFAR-10 with ADP [ 9] 0.826 0.895 0.859 0.486 
CIFAR-10 with AFC-CFL(Ours) 0.795 0.834 .0.814 . 0.514

EMNIST with non-defense 0.930 0.979 0.954 0.825 
EMNIST with common LDP 0.671 0.816 0.736 0.548 
EMNIST with ADP [ 9] 0.678 0.833 0.748 0.598 
EMNIST with AFC-CFL(Ours) 0.631 0.821 .0.722 . 0.712

ulations. As shown in Table 2, our proposed defense method, AFC-CFL, 
demonstrates exceptional effectiveness by significantly reducing the attacker’s 
scores. Specifically, AFC-CFL achieves a .17.5%(MNIST), .15.4%(CIFAR-10), and 
.24.3%(EMNIST) reduction in the attacker’s score. Figure 2 provides a detailed 
visualization of the model accuracy trends across all datasets. 

To further validate the performance of AFC-CFL, we compared it with the 
common Local Differential Privacy (LDP) defense method, which lacks adaptive 
adjustment capabilities. By carefully tuning the privacy budget of the common 
LDP, we ensured a comparable defense effect. However, while the common LDP 
defense also reduces the attacker’s score, it results in a significant drop in model 
accuracy. In contrast, our method strikes a better balance between privacy pro-
tection and model accuracy. Specifically, compared to the common LDP method, 
AFC-CFL improves model accuracy by .11.6%(MNIST), .32.8%(CIFAR-10), and 
.29.9%(EMNIST) while maintaining the same level of defense effectiveness. 

We also compare our method with another LDP-based strategy, Adaptive 
Differential Privacy (ADP) [ 9], which introduces decaying Gaussian noise during 
training. ADP employs the same initial noise scale as common LDP but reduces 
it during training with a decay rate of .R = 0.995. Experimental results indicate 
that while ADP achieves some improvement in model accuracy by reducing 
the added noise, its defense effectiveness is weaker compared to the common 
LDP. In contrast, AFC-CFL surpasses ADP in both model accuracy and defense 
effectiveness, providing stronger privacy protection. 

Overall, AFC-CFL achieves an excellent trade-off between model accuracy 
and privacy preservation. Not only does it maintain high model performance 
across different datasets, but it also significantly reduces the attacker’s ability 
to infer category information, making it a robust defense in CFL settings.
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5 Conclusion 

Our research demonstrates that CIA represents a significant threat to CFL. 
Due to the inherent structure of CFL, detecting category information at the 
cluster level can indirectly reveal category information about the individual cus-
tomers within that cluster. To address this threat, we propose a novel adaptive 
local differential privacy defense strategy called AFC-CFL, which strikes a bet-
ter trade-off between privacy protection and model accuracy. In the future, we 
plan to broaden the scope of our experiments to cover a wider range of scenarios 
and datasets, with a particular focus on implementing CIA attacks and defenses 
in dynamic CFL environments. These dynamic settings may provide additional 
contextual information that can be utilized in conjunction with inference results 
so that private information about the target customer can be inferred. Fur-
thermore, we aim to develop a robust defense framework that enhances privacy 
protection within collaborative learning systems. 
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