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Abstract
As a new federated learning(FL) paradigm, clustered fed-

erated learning (CFL) could effectively address the issue

of model training accuracy loss due to different data dis-

tribution in FL. However, the introduction of the cluster-

ing process also brings new risks. Adversaries can imple-

ment model poisoning by adding crafted perturbations with

clients’ model parameters, potentially resulting in overall

clustering failure. To tackle this problem, we propose a client

detection and parameter correction framework in this paper.

Our approach aims to identify malicious clients by analyz-

ing the difference in vector parameter density distribution

between malicious and benign clients. We precisely locate

malicious perturbations in the parameters and recover them,

enabling the server to effectively utilize benign updates for

normal clustering and training within the CFL framework.

Experiment results show that our defense algorithm outper-

forms others, consistently improving training accuracy by

an average of 30% under various kinds of attacks.

Keywords
Clustered federated learning, Malicious detection, Robust

learning.

1 Introduction
Federated learning (FL) [7] is a well-known framework of

the distributed machine learning. FL enables clients to train

a global model collaboratively under the coordination that

clients do not need to share their original training data[3].
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However, in the real-world scenarios, data generated by dif-

ferent clients often have varying distributions[13], which

can result in Non-IID and unbalanced data, reducing train-

ing accuracy and efficiency. Fortunately, Clustered Federated

Learning (CFL) addresses data heterogeneity by grouping

clients into clusters based on data features and training sep-

arate models for each cluster. However, the extra clustering

process may lead extra security risks. Malicious data or poi-

soning attacks from some clients may destroy the accuracy

of the CFL model[4]. To tackle the problem, researchers have

done some work on this field. For example, in [8], to address

the defect of adversarial clients inferring private information

by exploiting the similarity of data distribution, authors pro-

posed a CFL secure aggregation framework that simultane-

ously aggregates local gradients from multiple user clusters

without knowing any information about cluster identities

or local gradients. In [10], authors stated that CFL uses the

geometric properties of the FL loss surface to identify clus-

ter structures. It filters out adversarial clients in a relatively

small number of communication rounds.

Previous research mainly focuses on system robustness

based on final model training effectiveness, overlooking the

impact of clustering failures, caused by malicious clients.

The goal of CFL is personalization at the group level, while

incorrect clustering will reduce the training efficiency, and

will cause the leakage of model parameters [8]. To address

this, we propose a resilient defense frame with two compo-

nents: a malicious client detection module and a parameter

correction module. This is the first known study to focus

on addressing CFL clustering failures. We summarize our

contributions below:

1) We are the first to propose a flexible model poison

attack that can disable the clustering function in CFL.

This attack is capable of poisoning model parameters

stealthily, evading detection by the server.

2) We introduce a novel detection module based on pa-

rameter density distribution. This module can accu-

rately identify and flag potential malicious clients,

maintaining a high recognition rate even as the num-

ber of malicious clients increases.
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3) We propose our defense algorithm with residual-based

iterative confidence weight, which recovers the poi-

soned parameters and removes the impact of the attack

on the server side.

The remainder of the article is structured as follows: Sec-

tion II introduces our problem scenario and proposes the

dynamic attack algorithm for CFL. Section III designs and

analyzes the detection method of malicious client and the

poisoning parameter correction algorithm. Section IV shows

the performance of our algorithm under various datasets and

attacks. In section VI we conclude our work.

2 Problem Statement and Threat Model
2.1 Problem Scope
Consider a clustered federated learning scenario with sev-

eral clients participating in the training process and a central

server responsible for parameter aggregation and client clus-

tering [9]. After completing a round of local training, each

client will upload its model parameters to the server and the

server will calculate these parameters by the cosine similar-

ity to decide client clusters. This process will be iteratively

executed until the CFL converges, and in each round, a clus-

ter which has been decided in the last round may be further

bipartitioned. Suppose there is an adversary who has taken

control of one or more clients through trojan horses, or phys-

ical intrusion and induces those clients to become malicious

clients. Suppose the adversary has no knowledge of the tar-

get model of a particular client or its training data, but it

can modify some of the uploaded model parameters. The ad-

versary wants to disable CFL’s cluster process by modifying

these model parameters. We further suppose that the server

has some ability to discover attacks. If the server detects

suspicious parameters, it can discard them and exclude the

client for several rounds. The adversary’s goal is to disrupt

CFL’s clustering by strategically altering model parameters.

2.2 Threat Model
Denote 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑀) as one client, and denote 𝐶𝑖 (1 ≤ 𝑖 ≤
𝑇 ) as one cluster. According to the previous work [11], the

adversary can add noise to the original parameters instead

of replacing the parameters entirely. We define the malicious

parameter as 𝜃 ∗
𝑖,𝑛,𝑘

= 𝜃𝑖,𝑛,𝑘 + 𝛾∇𝑝 , where 𝜃𝑖,𝑛,𝑘 represents the
parameter of the 𝑘𝑡ℎ convolutional layer of benign client at

the 𝑛𝑡ℎ round of training, and poisoned entity represented

by 𝜃 ∗
𝑖,𝑛,𝑘

. 𝛾 is the disturbance factor and ∇𝑝 is the disturbance

vector. From [11] we know two methods for adding pertur-

bation are commonly discussed, the inverse unit vector and

the inverse sign, which can be represented as the following.

Table 1: Notations

Symbol Explanation

𝑁 Training iteration round

𝑀 Number of clients

𝑀∗ Number of malicious clients

𝐾 Number of parameters for a single model

𝐷𝑖 Datasets of client 𝑖

𝐶 ∈ C One cluster in the set of clusters

𝑀𝑒𝑑 ( ·) Median estimate

𝑝 Perturbation vector

𝜃𝑖,𝑛,𝑘 Layer 𝑘 parameters of the client 𝑖 for the round 𝑛 of

training

𝜃 ∗
𝑖,𝑛,𝑘

Parameters which under attack

𝛿𝑖,𝑛,𝑘 Indexes of 𝜃𝑖,𝑛,𝑘
𝛽1 Federated learning stopping criterion in CFL

𝛽2 Clustering stopping criterion in CFL

𝜇𝑖,𝑛,𝑘 Normalised residuals

𝑧𝑖,𝑛,𝑘 Model parameter confidence

Δ𝜃𝐶 Global models within clusters

• Inverse unit vector:

∇𝑝𝑢𝑣 (𝜃𝑖 ) =
−𝜃𝑖
∥𝜃𝑖 ∥2

. (1)

• Inverse sign:

∇𝑝𝑠𝑔𝑛 (𝜃𝑖 ) = −𝑠𝑖𝑔𝑛(𝑓𝑎𝑣𝑔 (𝜃𝑖 )). (2)

Define the data of 𝑐𝑖 as 𝐷𝑖 , and 𝐷 is the sum of data from

all clients. Define the empirical risk function of 𝑐𝑖 as 𝑟𝑖 (𝜃 ).
Define 𝛽1 and 𝛽2 as two constants that determine whether

the clustering process should be stopped. According to [9],

we have

0 < ∥
∑︁

𝑖=1,...,𝑀

𝐷𝑖

|𝐷 | ∇𝜃𝑟𝑖 (𝜃 )∥ < 𝛽1 ≤ 𝛽2 < max

𝑖=1,...,𝑀
∥∇𝜃𝑟𝑖 (𝜃 )∥, (3)

which can ensure that the CFL jointly optimizes local risk

functions for all clients in different clusters and converge

towards the target.

The adversary’s goal is to change the clustering process

without excessively affecting training accuracy. Hence, the

perturbation factor can be defined by

∇𝑝 ← ∇𝑝 (argmin(∥
∑︁

𝑖=1,...,𝑀

𝐷𝑖

|𝐷 | ∇𝜃𝑟𝑖 (𝜃 )∥ > 𝛽1)). (4)

From this equation we can get the ideal range of the pertur-

bation vector.

After the perturbation vector is determined, the adversary

will use a perturbation factor 𝛾 (𝛾 > 1) with the perturbation

vector to determine how to modify origin model parameters.

In Algorithm 1, we describe whole steps for the adversary’s

attack.

3 Detection and Correction Algorithm
In previous section, we detail the steps of the adversary’s at-

tack. Here, we present our defense algorithm. Since the attack

is dynamic and employs weak perturbations, it is challeng-

ing for the server to detect.[12]. To address this, we design a
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Algorithm 1 Attack Algorithm

Input: 𝛾𝑖𝑛𝑖𝑡 , 𝜃𝑖,𝑛,𝑘 .
Output: 𝜃∗

𝑖,𝑛,𝑘
.

for each training iteration n in [1, N ] do
2: Client :

for each client i in [1,𝑀] in parallel do
4: Client receive updated model parameters

// For malicious client
6: Compute perturbation ∇𝑝 by Equation (4)

function computeGamma(𝛾𝑖𝑛𝑖𝑡 )

8: step← 𝛾𝑖𝑛𝑖𝑡 /2, 𝛾 ← 𝛾𝑖𝑛𝑖𝑡

while 𝛾 > 1 and training iteration n < N do
10: if the server selected this client then

Inject optimized perturbation 𝛾∇𝑝 and training

12: if 𝛾 ≠ 𝛾𝑖𝑛𝑖𝑡 then
𝛾 ← (𝛾 + 𝑠𝑡𝑒𝑝 )

14: end if
else

16: 𝛾 ← (𝛾 − 𝑠𝑡𝑒𝑝 )
if the client trained last round then

18: 𝑟𝑒𝑡𝑢𝑟𝑛 𝛾

end if
20: end if

𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝/2
22: end while

end function
24: 𝜃∗

𝑖,𝑛,𝑘
= 𝜃𝑖,𝑛,𝑘 + 𝛾∇𝑝

end for
26: end for

two-step defense algorithm. Firstly, the server will build an

adaptive classification algorithm to identify malicious clients.

Secondly, the server will locate the poisoning parameters.

Fig. 1 provides an overview of our defense algorithm, which

we will discuss further in the following sections.

Figure 1: Overview of the our defense in CFL.

3.1 Malicious Client Detection Algorithm
The server is unable to differentiate between malicious and

benign clients solely based on the vector norm of the model

Algorithm 2 Client Detection and Parameter Correction Algorithm

Input: Iteration round 𝑁 , clients number𝑀 , set of clusters C, set of model

parameters Θ.
Output: Malicious client labels𝑀∗, global models within clusters Δ𝜃𝑛

𝐶
.

1: for each training iteration n in [1, N ] do
2: for each client in [1,𝑀] in parallel do
3: 𝜃 ← 𝜃 + Δ𝜃𝑐
4: Δ𝜃𝑐 ← 𝑆𝐺𝐷𝑛 (𝜃, 𝐷 ) − 𝜃
5: end for
6: for C ∈ C do
7: Detecting malicious clients:
8: (Δ𝜔1 . . . Δ𝜔𝑀 ) ← flatten({𝜃𝑖 }Θ𝑖=1 )
9: (𝑒 (1,1) . . . 𝑒 (𝑀,𝑀 ) ) ← cosinesimilarity(Δ𝜔1 . . . Δ𝜔𝑀 )
10: Compute edges weight:𝑑𝑚𝑟 (𝜔𝑝 , 𝜔𝑞 )
11: Create minimum spanning tree: 𝑃𝑟𝑖𝑚 (𝑑𝑚𝑟 (𝜔𝑝 , 𝜔𝑞 ) )
12: Compress tree nodes to get noise labels 𝐿𝑛𝑜𝑖𝑠𝑒 foreach client

13: if count 𝐿𝑛𝑜𝑖𝑠𝑒 > Γ then
14: Parameter Correction:
15: Estimated linear regression model:

16: 𝐵̂𝑛,𝑘 = 𝑀𝑒𝑑2{ (𝜃 𝑗,𝑛,𝑘 − 𝜃𝑖,𝑛,𝑘 )/(𝛿 𝑗,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘 ) }
17: 𝐴̂𝑛,𝑘 = 𝑀𝑒𝑑2{ (𝛿 𝑗,𝑛,𝑘𝜃𝑖,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘𝜃 𝑗,𝑛,𝑘 )/(𝛿 𝑗,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘 ) }
18: Calculate parameters confidence: 𝜇𝑖,𝑛,𝑘
19: Conduct parameters recovery: 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜃∗

𝑖,𝑛,𝑘
)

20: Parameters transmission: 𝜃∗
𝑖,𝑛,𝑘
← 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜃∗

𝑖,𝑛,𝑘
)

21: end if
22: Continue training for clustering results: (𝐶1 . . .𝐶𝑇 ) ∈ C
23: end for
24: for C ∈ C do
25: Δ𝜃𝑛

𝐶
← 1

|𝐶 |
∑

𝑖∈𝐶 Δ𝜃𝑖,𝑛
26: end for
27: end for

parameters uploaded by the clients. Therefore, we propose

using a Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN)-based algorithm[1] for

malicious client detection in clustered federated learning

scenario. To identify malicious clients without accessing

their data, we embed the HDBSCAN clusteringmethod in the

recognition algorithm, through which we are able to further

identify the variability among the parameters of different

clients by vector direction.

The server executes the CFL algorithm upon receiving the

model parameters uploaded by the client. The perturbations

introduced by malicious clients hinder the server’s ability

to perform effective clustering and allocate distinct model

parameters. If the clustering step does not satisfy condition(3)

due to the existence of malicious clients, HDBSCAN-based

malicious client detection algorithm will be executed. The

specific steps are as follows:

(1) To increase the algorithm processing speed, we serialize

theweight parameters uploaded by the client (Δ𝜔1 . . . Δ𝜔𝑀 ) ←
flatten({𝜃𝑖 }Θ𝑖=1), and denote Δ𝜔𝑖 as flattened model param-

eters of the client i.

(2) Calculate the cosine distances 𝑒𝑖, 𝑗 between these vec-

tors to determine mutual reachable distances. These dis-

tances measure the true density distribution of the model
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parameters for each client. Benign clients typically have a

higher parameter density, whereas malicious clients exhibit

a lower density.

𝑒𝑖, 𝑗 =
⟨Δ𝜔𝑖 ,Δ𝜔 𝑗 ⟩
∥Δ𝜔𝑖 ∥∥Δ𝜔 𝑗 ∥

∀𝑖, 𝑗 ∈ 𝑐, (5)

𝑑𝑚𝑟 (𝜔𝑝 , 𝜔𝑞) = max{𝑑𝑐𝑜𝑟𝑒 (𝜔𝑝 ), 𝑑𝑐𝑜𝑟𝑒 (𝜔𝑞), (𝑒 (1,1) . . . 𝑒 (𝑀,𝑀 ) )}.
(6)

According to[6], 𝑑𝑐𝑜𝑟𝑒 (𝑥) is the distance from 𝑥 to its𝑚𝑝𝑡𝑠-

nearest neighbor.

(3) We construct minimum spanning tree, which forms a

weighted graph based on the parameters of all the clients.

Note that the weight of the edges between any two points is

equal to the 𝑑𝑚𝑟 (𝜔𝑝 , 𝜔𝑞) of these points.
(4) We sort the edges of the tree in increasing order based

on the distance. Then, we iterate through the sorted edges,

compressing the tree nodes to normalize the parameter re-

gions assigned to each client. The parameter uses the weights

of the edges and the number of coverage points to calculate

the stability value. This stability value is utilized by HDB-

SCAN to identify cluster candidates with the most homoge-

neous density and to specify the number of malicious clients.

The above steps allow us to detect and mark malicious

clients to separate them from other clients.

3.2 Parameter Correction Algorithm
In general CFL, there is a high probability that malicious

client will "honestly" train a model, but then only add per-

turbations to 10 % of the model’s parameters[2]. This allows

the adversary’s model to still achieve no less than 90% con-

fidence in the parameters. To address this, we introduce a

residual-based iterative confidence weight repair algorithm,

which utilize benign parameters and repair the poisoned

model effectively. Fig. 4 shows our algorithm in detail.

Figure 2: Overview of the our Parameter Correction Algo-
rithm in CFL.

Weare inspired by the Iteratively Reweighted Least Squares

(IRLS) algorithm in M-estimation[5], which is commonly

used in deblurring algorithms in image processing to address

the effects of non-normally distributed noise in images. Sim-

ilarly, we adapt this idea to our attack detection algorithm to

tackle the model poisoning problem by malicious clients. As

Fig. 2 shows, we assume that a total of𝑀 clients participate

in the training, and the model parameters uploaded by each

client are denoted as 𝜃𝑖,𝑛,𝑘 , where 𝑖 ∈ {1, 2, . . . , 𝑀}. When-

ever our algorithm is executed, the server extract the model

parameters with the same labels of each client and merges

them into the sets 𝜃𝑘 respectively (𝑘 is the index of model

parameters type), and the subscripts corresponding to 𝜃𝑖,𝑛,𝑘
are 𝛿𝑖,𝑛,𝑘 , each parameter in 𝜃𝑘 with the same labels is passed

through the server to generate a linear regression estimator.

For the binary linear regression model 𝑌 = 𝐴 + 𝐵𝑋 + 𝜀, the
slope 𝐵̂ and intercept 𝐴 are estimated using the repeated

median strategy:

𝐵̂𝑛,𝑘 = 𝑀𝑒𝑑2{(𝜃 𝑗,𝑛,𝑘 − 𝜃𝑖,𝑛,𝑘 )/(𝛿 𝑗,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘 )}, (7)

𝐴𝑛,𝑘 = 𝑀𝑒𝑑2{(𝛿 𝑗,𝑛,𝑘𝜃𝑖,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘𝜃 𝑗,𝑛,𝑘 )/(𝛿 𝑗,𝑛,𝑘 − 𝛿𝑖,𝑛,𝑘 )}, (8)
where 𝑗 ∈ {1, 2, . . . , 𝑀}. The residuals of the same model

parameters for different clients are obtained by estimating

the two parameters above:

𝜀𝑛,𝑘 = 𝜃𝑛,𝑘 − 𝐵̂𝑛,𝑘𝜃𝑛,𝑘 −𝐴𝑛,𝑘 . (9)

Because of the different data ranges for the different pa-

rameters, the standardised residuals 𝜎𝑖,𝑛,𝑘 were obtained by

normalising 𝜖𝑛,𝑘 :

𝜎𝑖, 𝑛, 𝑘 =
𝜀𝑖,𝑛,𝑘

𝜏𝑛,𝑘
, (10)

𝜏𝑛,𝑘 = 𝑀𝑒𝑑{𝜅 |𝜀𝑛,𝑘 | (1 +
𝑀

2(𝑀 − 1) )}. (11)

The confidence level of the 𝑘th model parameter for the

𝑖th client under the 𝑛th round is further obtained from the

obtained normalised residuals:

𝜇𝑖,𝑛,𝑘 ←
√︁
1 − 𝑑𝑖𝑎𝑔(𝐻𝑛,𝑘 )

𝜎𝑖,𝑛,𝑘
Ψ(

𝜎𝑖,𝑛,𝑘√︁
1 − 𝑑𝑖𝑎𝑔(𝐻𝑛,𝑘 )

). (12)

The hat matrix is:

𝐻𝑛,𝑘 = 𝛿∗
𝑛,𝑘
{(𝛿∗

𝑛,𝑘
)𝑇𝛿∗

𝑛,𝑘
}−1 (𝛿∗

𝑛,𝑘
)𝑇 , (13)

𝛿∗
𝑛,𝑘

= [𝛿 (1)
𝑛,𝑘

𝛿
(2)
𝑛,𝑘

. . . 𝛿
(𝑀 )
𝑛,𝑘
]𝑇 . (14)

Ψ here denotes the confidence interval, where the confidence

level of the model parameters within the confidence interval

is set to 1, satisfying:

Ψ(𝑥) =𝑚𝑎𝑥{−𝜆
√︁
2/𝑀,𝑚𝑖𝑛(𝜆

√︁
2/𝑀,𝑥)}, (15)

The hyper-parameter 𝜆 can be adjusted to indirectly in-

crease the server’s trust in benign clients. To account for

the inherent model heterogeneity among these clients, we

introduce a confidence decay interval based on the original
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confidence interval and set a threshold v for smooth transi-

tions of parameter confidence between the confidence and

non-confidence intervals. The model parameter confidence

is then governed by the following equation.

𝑧𝑖,𝑛,𝑘 =


1 , if

��𝜎𝑖,𝑛,𝑘 �� ≤ √2𝜆√
𝐾

;��� √
2𝜆√

𝐾𝜎𝑖,𝑛,𝑘

��� , if

√
2𝜆√
𝐾

<
��𝜎𝑖,𝑛,𝑘 �� ≤ ���√2𝜆v√

𝐾

���.
0 , otherwise.

(16)

Therefore, the final model weights that can be obtained

after our iterative confidence reweighting algorithm can be

expressed as:

𝜗𝑖,𝑛,𝑘 = 𝜃𝑖,𝑛,𝑘𝜇𝑖,𝑛,𝑘𝑧𝑖,𝑛,𝑘 . (17)

Obviously, the tensor of 𝜗𝑖,𝑛,𝑘 is probably all 0, it is rep-

resented as the 𝑘th model parameter of this client having

parameter confidence of 0, in this case we affirm that the

model parameter has been tampered.

We reassign the value of the parameter 𝑘 that was poi-

soned in this client 𝑖 in the𝑛th round of training, and transfer

it to the target client when the server sends the parameters:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜃 ∗
𝑖,𝑛,𝑘
) =

𝑀−𝑀∗∑︁
𝑖=𝑀/2

1

𝑀 −𝑀∗𝜗𝑖,𝑛,𝑘 . (18)

4 Experiments
In this section, we give simulation results. The objectives

of our experimental evaluation are as follows: (a) the per-

formance of our frame relative to other existing defense

methods, (b) our frame performance of successful defense

and clustering, (c) model robustness of using our defense

frame against different attacks.

4.1 Experiment Setup
To begin with, we implement CFL framework based on Py-

torch, and conduct our experiments on a server equipped

with NVIDIA RTX 2070 SUPER with 8GB RAM. We per-

form our experiments on the well-known EMNIST, Fashion-

MNIST and CIFAR-10 datasets. All the model training tasks

are performed using Pytorch. We also adopt three known

robust methods: Krum, Trimmed-mean,and Fedavg for com-

parison with our approach.

4.2 Experiment Evaluation
As shown in Fig. 3, we compare the robustness of the clus-

tering function of our defense method concerning existing

methods, and we select two indicators: the maximum inter-

cluster distance and the average intra-cluster distance, they

indicate whether we can successfully defend and clustering.

(a) Maximum inter-cluster distance (b) Mean intra-cluster distances

Figure 3: Maximum inter-cluster distance and mean intra-
cluster distances under different defense methods.

In this set of experiments, the hyper parameters 𝛽1 = 0.4

and 𝛽2 = 1.7, the number of clients𝑀 is 10, in which there ex-

ists one malicious client, and the number of training rounds

𝑁 is 100, we follow IRLS set 𝜅 to 1.48, set Γ to 3.0. Accord-

ing to the setting in CFL, the system starts clustering when

the maximum inter-cluster distance is greater than 𝛽2 and

the average intra-cluster distance is less than 𝛽1 satisfied.

In Fig.3-(a), our defense is below 𝛽2 and converges after 30

rounds, similar to the CFL without attacks, indicating suc-

cessful clustering before 30 rounds. In Fig.3-(b), our defense

clearly outperforms the other methods, achieving conver-

gence and satisfying the clustering condition 2.

Table 2: Simulation result of training accuracy(%)

sign attack uv attack

5% 10% 20% 5% 10% 20%

No defense 73.16 33.31 32.18 66.79 52.61 26.89

Krum 52.03 41.26 41.89 52.40 41.47 39.14

EMNIST Trimmed-mean 47.47 41.59 41.92 52.06 40.84 39.50

Fedavg 64.11 23.63 15.96 64.84 46.80 20.89

Our defense 71.89 70.02 70.72 72.45 71.36 64.26

CFL 72.66

No defense 83.58 34.86 26.56 72.81 42.30 41.28

Krum 48.43 52.93 49.30 63.47 57.08 47.96

Fashion Trimmed-mean 64.22 57.30 48.38 64.38 70.55 52.95

MNIST Fedavg 83.89 84.79 24.29 84.48 85.83 27.19

Our defense 87.77 85.50 79.49 88.25 85.44 80.08

CFL 88.06

No defense 41.66 20.87 19.09 43.99 35.80 46.27

Krum 22.76 17.05 12.89 35.15 20.43 20.42

CIFAR Trimmed-mean 20.67 17.26 15.33 24.97 19.25 19.03

10 Fedavg 25.43 23.60 18.45 29.48 26.64 25.13

Our defense 48.03 63.93 55.44 49.34 60.55 57.68

CFL 70.52

We evaluate the effects of different defense algorithms in

CFL scenarios with 5%, 10%, and 20% malicious clients in

Table 2. Our method achieves training accuracy close to that

of models without attacks and outperforms others.

As shown in Fig. 4, we compare training accuracy and clus-

tering results across various defense methods and datasets.

The dotted line represents the clustering process in Fig. 4-

(a). Green points represent our defense’s clustering, blue
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(a) Training with EMNIST under uv at-

tack

(b) Training with Fashion-MNIST un-

der sign attack

(c) Training with EMNIST under uv at-

tack

(d) Training with Fashion-MNIST un-

der sign attack

Figure 4: Comparison of CFL and poisoned CFL under dif-
ferent defense methods with various datasets and models.

points indicate no-attack scenarios. In contrast, Krum and

Trimmed-mean fail to improve clustering accuracy. Our al-

gorithm effectively restores clustering after attacks.

(a) attack conv1 (b) attack conv2

Figure 5: Comparison of different model parameters identi-
fied by our defense method after attack(First 30 rounds).

Fig. 5 compares the effectiveness of our defense algorithm

in identifying malicious clients during the first 30 rounds. We

tested with 5%, 10%, 15%, and 20%, malicious clients and eval-

uated the identification results under various attack methods.

The bar graph shows successful identifications, while the

line graph reflects the defense success rate post-initiation.

5 Conclusion
This paper presents a defense framework for CFL cluster-

ing failure. The method includes a HDBSCAN-based mali-

cious client detection algorithm and a residuals based weight

reweighting algorithm. Our algorithm realizes the detection

and the location of poisoning parameters. Experimental re-

sults show that this method can effectively defend against

adversary attacks and significantly improve the robustness

of CFL. Compared with the existing defense methods, it has a

stronger adaptive model recovery ability, thus guaranteeing

the performance of the global model.
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