This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2025.3637061

A Client-level Conditional Generative Adversarial Network-based

Data Reconstruction Attack and its Defense in Clustered Federated

Learning Scenario

Lei Shi Member, IEEE, Han Wu*, Xu Ding, Hao Xu, Sinan Pan

Abstract—Clustered Federated Learning (CFL) has emerged as
an effective solution to address data heterogeneity in traditional
Federated Learning (FL). However, the intrinsic cluster-based
structure of CFL introduces new privacy risks, making it more
vulnerable to client-level inference attacks. In this paper, we
propose a novel client-level data reconstruction attack based on
Conditional Generative Adversarial Networks (cGANs), which
exploits intra-cluster similarities to enhance the quality of recon-
structed private data. Unlike prior works, our attack requires
only partial access to a victim’s model updates through passive
eavesdropping, thereby reflecting a more realistic threat model
in decentralized and resource-constrained environments such as
the Internet of Things (IoT). To mitigate this threat, we develop a
lightweight and adaptive defense mechanism grounded in Local
Differential Privacy (LDP). Our design incorporates dynamic
privacy budget decay, selective layer-wise noise injection, and
real-time similarity-guided adaptation. This approach achieves a
favorable privacy-utility trade-off while explicitly addressing the
computational, communication, and latency constraints inherent
in IoT environments. Experimental results demonstrate that
our proposed attack improves reconstruction similarity by up
to 20% compared with existing baselines, while the defense
reduces attack success rate by 27.2% with only a 3.3% ac-
curacy drop. Moreover, it significantly lowers computational
cost—reducing FLOPs by 42.7%, memory usage by 23.4%,
and DP noise processing time by 45.5%—without introducing
additional communication overhead. These findings highlight the
underestimated privacy vulnerabilities in CFL and underscore
the necessity of efficient, context-aware defense strategies.

Index Terms—Clustered federated learning, Data reconstruc-
tion attack, Differential privacy, Generative adversarial nets.

I. INTRODUCTION

EDERATED Learning (FL) [1] [2] enables collaborative
model training across decentralized clients without ex-
changing raw data, thereby providing a promising privacy-
preserving paradigm. However, standard FL frameworks of-
ten suffer from data heterogeneity—where clients hold non-
independent and identically distributed (non-1ID) data—which
significantly degrades model performance and convergence
stability.
To address this challenge, Clustered Federated Learning
(CFL) [3] has been proposed. CFL organizes clients into
multiple clusters based on data similarity, enabling each cluster
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to train its own localized global model. This cluster-specific
approach improves both accuracy and convergence in hetero-
geneous environments. Nevertheless, CFL also introduces new
security vulnerabilities. Specifically, the enforced homogeneity
within clusters reduces the diversity of model updates, thereby
lowering the entropy of shared information and making it more
susceptible to inference attacks.

Despite the growing attention to privacy risks in FL, the
unique threats stemming from CFL’s structural characteristics
remain unexplored [4]. Most existing reconstruction attacks
are designed for standard FL settings, assuming either full
access to client gradients (e.g., DLG [5], iDLG [6]) or cen-
tralized adversaries capable of observing global model updates
(e.g., Hitaj et al.’s GAN-based attack [7]). Such assumptions,
however, are often impractical in decentralized real-world
deployments, particularly in IoT environments.

In this paper, we propose a novel and practical client-level
data reconstruction attack tailored for the CFL framework.
Our method leverages Conditional Generative Adversarial
Networks (cGANs) and is executed by a malicious client em-
bedded within a CFL cluster. Unlike prior works, our attacker
gains only partial access to the victim’s uploaded model
parameters through passive eavesdropping over insecure com-
munication channels (e.g., Wi-Fi, BLE). Despite this limited
visibility, the attacker exploits intra-cluster similarity to train
a cGAN capable of generating high-fidelity reconstructions of
the victim’s private training data. This setup reflects a more
realistic and severe threat scenario, especially in resource-
constrained and decentralized environments such as IoT or
edge computing.

To counter this attack, we propose a lightweight and
adaptive defense mechanism in Local Differential Privacy
(LDP). The method dynamically adjusts privacy budgets and
selectively injects noise into model layers based on real-
time risk estimation, thereby achieving a favorable privacy-
utility trade-off. Importantly, our design explicitly accounts
for constraints typical of IoT environments [8]—including
limited computational resources, restricted memory, band-
width limitations, and strict latency requirements—which
render conventional, heavyweight privacy-preserving meth-
ods impractical. By maintaining low overhead and avoiding
centralized coordination, the proposed defense is particularly
suitable for on-device deployment in real-world IoT settings.

Our work sheds light on a previously underexplored vulner-
ability in CFL and makes the following key contributions:

o We identify and formulate a practical client-level data re-
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construction attack in the CFL setting, leveraging cGANs
to exploit intra-cluster similarity under an eavesdropping
threat model.

e« We propose an adaptive hybrid loss function that en-
hances reconstruction fidelity while improving the sta-
bility of GAN training.

« We develop a resource-efficient defense mechanism based
on LDP, which integrates privacy budget decay, selective
layer-wise noise injection, and real-time adaptive control,
making it suitable for IoT constraints.

o We conduct extensive experiments to evaluate the effec-
tiveness and efficiency of the proposed attack and defense
framework in realistic CFL and IoT environments.

The remainder of the paper is organized as follows: Section
II reviews related work on FL, CFL, data privacy attacks, and
GAN:S. Section III presents the threat model, the details of the
proposed attack, and the corresponding experimental results.
Section IV introduces the defense methodology and evaluates
its performance through comprehensive experiments. Finally,
Section V concludes the paper and outlines future research
directions.

II. RELATED WORK
A. Data Reconstruction Attacks in FL and CFL

Federated Learning (FL) faces a wide range of secu-
rity threats, among which data reconstruction attacks [9],
[10] are particularly concerning because they attempt to re-
cover clients’ original training data, thereby directly violat-
ing user privacy. Such attacks undermine the core promise
of FL—data confidentiality—and are especially harmful in
privacy-sensitive domains such as healthcare and finance.

Data reconstruction attacks in FL can broadly be divided
into two main categories: gradient inversion-based attacks and
GAN-based attacks.

Gradient inversion-based attacks attempt to recover client
data by reversing gradients shared during training. Represen-
tative methods include DLG and its improved version iDLG,
which optimize synthetic inputs to match observed gradients.
More advanced schemes such as GS [11], CPL [12], R-
GAP [13], and COPA [14] enhance reconstruction fidelity by
estimating gradient sensitivity and leveraging feature priors.
FedDC [15], while originally designed to mitigate conver-
gence issues in non-IID settings, also modifies model update
dynamics in ways that can inadvertently increase privacy leak-
age. These methods are typically server-side and assume full
access to client gradients and updates, enabling high-fidelity
reconstructions but limiting their practicality in decentralized
IoT and edge environments.

GAN-based attacks employ Generative Adversarial Net-
works to learn and replicate the data distribution of target
clients. The seminal work by Hitaj et al. [7] demonstrated that
a malicious client could train a GAN to generate synthetic
data resembling the inputs of other clients. More recently,
VagueGAN [16] investigated the use of GANs in poisoning
attacks and highlighted their potential for reconstructing struc-
tured data in FL. In vertical federated learning (VFL) settings,
Active Reconstruction attacks leverage active queries and

cross-party feature correlations to enhance attack effectiveness.
Recent studies indicate that adversaries can exploit adaptive
generative models to achieve improved reconstructions even
in resource-constrained scenarios. Zhao et al. [17] provide
a comprehensive survey of privacy attacks and defenses in
federated learning, offering updated taxonomies of reconstruc-
tion threats. Tan et al. [18] empirically reassess the strength
of reconstruction attacks under realistic deployments, show-
ing that while some traditional methods weaken, generative
and topology-aware strategies remain effective. Moreover,
undetectable reconstruction attacks such as URVFL [19] and
generative frameworks like GenDRA [20] demonstrate that
even with constrained visibility or stealthy interventions, ad-
versaries can still recover sensitive data. These results directly
motivate our focus on client-level, cGAN-based attacks in
clustered federated learning (CFL).

However, most of these methods were developed within
conventional FL frameworks, with limited attention to client-
side GAN-based reconstruction attacks in clustered architec-
tures such as CFL. This gap is particularly critical given CFL’s
unique intra-cluster communication patterns and relatively
homogeneous data distributions, which introduce distinct vul-
nerabilities.

B. Lightweight and Adaptive Defenses for IoT

The rapid proliferation of IoT devices has introduced new
challenges for applying privacy-preserving mechanisms within
FL, particularly due to the limited computational resources,
memory, and energy available on edge devices. Traditional
defense strategies, such as global differential privacy and
secure aggregation [21], often incur substantial computational
and communication overhead, rendering them impractical for
many real-world IoT deployments.

To overcome these limitations, recent studies have inves-
tigated lightweight and adaptive defense mechanisms. For
example, PrivateFL-GAN [22] integrates differential privacy
into GAN-based FL systems to generate synthetic data while
preserving privacy. However, its reliance on globally added
noise makes it less effective in heterogeneous or dynamic
environments. Similarly, FedDC [15], although originally pro-
posed to improve training under non-IID conditions, indirectly
enhances privacy by decoupling local drift.

In contrast, adaptive privacy-preserving methods dynami-
cally adjust protection levels according to contextual indica-
tors such as model performance or data sensitivity, thereby
minimizing unnecessary utility loss. Local Differential Privacy
(LDP) has emerged as a particularly promising solution for
decentralized and resource-constrained environments, as it
allows each client to perturb its own data or update before
transmission, removing reliance on a trusted central server.
Recent advances have introduced layer-wise LDP schemes that
selectively inject noise into sensitive layers [23], improving
the privacy-utility balance, as well as privacy budget decay
functions [24] that gradually reduce noise during training to
preserve convergence and accuracy.

Recent studies increasingly emphasize adaptive and
lightweight defenses in federated learning (FL), particularly
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for IoT-oriented environments. A 2024 systematic review of
differentially private FL categorizes adaptive-budget and per-
layer defenses as promising approaches. Building on this,
ALDP-FL [25] introduces adaptive localized differential pri-
vacy with bounded perturbations, demonstrating that real-
time adjustment of noise can significantly improve the pri-
vacy—utility trade-off in IoT scenarios. Similarly, AdapLDP-
FL [26] proposes dynamic adaptation of clipping and noise
bounds to better resist evolving adversarial strategies, while
Zhang et al. [27] explore adaptive differential privacy in asyn-
chronous FL, addressing challenges of resource heterogeneity
and communication constraints. Together, these works high-
light that effective defenses in IoT-oriented FL. must balance
privacy, utility, and system efficiency. Our method extends
these directions by integrating privacy budget decay, selective
layer-wise perturbation, and real-time similarity-guided adjust-
ments, specifically tailored for CFL environments.

Despite these advancements, few existing methods simul-
taneously address all three aspects—privacy effectiveness,
computational efficiency, and adaptiveness—within the CFL
setting. Building on this foundation, we propose a client-
side, lightweight, and adaptive defense strategy that integrates
privacy budget decay, selective parameter protection, and real-
time feedback-driven adjustments. This design is specifically
tailored for CFL systems deployed in [oT environments, where
both resource constraints and adaptive privacy mechanisms are
imperative.

III. ATTACK

In this section, we present the overall threat model of the
Clustered Federated Learning (CFL) system and detail the
design of our proposed client-level data reconstruction attack.

A. Threat Model

Consider a CFL system that consists of a central parameter
server and multiple clients, as illustrated in Fig. 1. Each client
holds non-independent and Identically Distributed (Non-IID)

data. Assume that clients can be categorized into n groups
according to their data distributions. Let D; (: = 1...n)
denote the set of clients sharing the same data distribution.
In a typical CFL workflow, two fundamental processes are
involved: client clustering and model aggregation. As shown
in Algorithm I, during client clustering, the server identifies all
D; through three steps: (1) distributing the initial global model,
(2) collecting updated client parameters, and (3) constructing
a cosine similarity matrix to guide clustering. Based on the co-
sine similarity matrix, a clustering algorithm such as K-Means
is applied to partition clients into n distinct groups. This
procedure is repeated until suitable clusters D; are established.

Algorithm 1 Clustering process

Input: the number of clients m, the number of clusters n, client k’s
parameters in round 4 p¥(k = 1...m)

1: Server calculates cosine similarity according p? (k = 1...m).

2: Server constructs the cosine similarity matrix M.

3: Server divides the clients into n clusters using the clustering
algorithm(K-Means for example) according to the cosine simi-
larity matrix M..

4: return Multiple clusters a;(: = 1...n).

As shown in Fig. 2, we assume an adversary that participates
legitimately in CFL and is assigned to one cluster during
clustering. The adversary has white-box knowledge of the
model architecture and label space and aims to reconstruct
a co-clustered victim’s local data by exploiting intra-cluster
similarity in model updates. Concretely, the adversary obtains
partial visibility into the victim’s model parameters via passive
eavesdropping on unsecured communication channels (e.g.,
Wi-Fi, BLE, vulnerable edge devices) and accumulates partial
parameter snapshots across rounds (a stealthy, passive MITM
strategy). In addition, the adversary may be a colluding
client within the same cluster. In either scenario, only lim-
ited, round-wise parameter access is required, which reflects
a realistic constraint in many practical CFL deployments,
particularly lightweight IoT systems relying on simplified
transmission protocols or local peer-to-peer exchanges. When
end-to-end encryption (e.g., TLS or secure aggregation) is
enforced, the attack capability is naturally limited. Therefore,
this threat model provides an upper-bound analysis of potential
data leakage in less protected FL systems.

Merge with local data

Fig. 3. Compact workflow of the client-level reconstruction attack in CFL.
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B. Client-level ¢GAN-based Data Reconstruction Attack in
CFL

We propose a client-level data reconstruction attack tailored
for CFL that leverages conditional Generative Adversarial
Networks (cGANs). The attack is executed by a malicious
client that has been legitimately assigned to the same cluster
as its target; it exploits intra-cluster similarity in model updates
to recover private training examples from peer clients. As
summarized in Algorithm II, the attack proceeds in two phases:

1) Passive Phase (Parameter Eavesdropping and GAN
Training): The adversary passively intercepts partial model
parameters (e.g., selected layer weights, compressed updates
or gradients) uploaded by the target victim during routine CFL
rounds. Despite limited visibility, the adversary aggregates
these parameter snapshots across training rounds and uses
them, together with cluster-level statistics, to supervise the
training of a cGAN.

o The generator G synthesizes data conditioned on class
labels.

o The discriminator D distinguishes real samples from
generated ones.

Concretely, the generator is trained using both the global clus-
ter model and the intercepted victim parameters as supervision.
Over multiple communication rounds, G gradually approxi-
mates the victim’s data distribution and produces increasingly
realistic samples.

2) Active Phase (Label Manipulation and Model Poi-
soning): After the passive phase yields sufficiently plausible
samples, the adversary may optionally adopt a more aggressive
refinement step. The generator produces samples targeting a
specific class (e.g., “5”), deliberately mislabels them (e.g., as
“10”) and incorporates them into its local training set. This
process poisons the cluster model, slows convergence, and
extracts more detailed features of the victim class, further
improving reconstruction fidelity.

Attack Overview: Fig. 3 illustrates the overall workflow.
The adversary alternates between passive learning and active
manipulation, enabling progressive and stealthy reconstruction
of the victim’s private data without remaining compliant with
CFL protocols.

Analytical Note on Attack Efficiency. To clarify the
theoretical underpinnings of the proposed cGAN-based
reconstruction, we briefly analyze the relation between
gradient visibility and recovery probability. Let V; denote
the proportion of gradients visible to the adversary and
S, the intra-cluster similarity. The empirical success rate
Psycc can be approximated as:

Proee / P(Go(a) | Vi, 5.) de, (1)

which grows sub-linearly with V,; when S, is high. This
implies that even partial gradients can yield recognizable
reconstructions in clustered settings, consistent with prior
gradient inversion analyses. The computational complexity of
the attack scales with O(T"|V;|), confirming its feasibility for
resource-constrained clients.

4
Algorithm 2 Client-Level Reconstruction Attack in CFL
Require: Number of clients m, rounds T’
1: for each round ¢ =1 to 7" do
2:  Server performs clustering and model aggregation
3:  Server sends cluster-specific model 0; to clients
4:  for each client £ do
5: if client k is benign then
6: Train locally and upload update 6}
7: else if client k is adversary then
8: Receive cluster model 9;
9: Passive: Eavesdrop partial update 67, .. .
10: Update discriminator D with 6¢, ..
11: Train generator G' to match victim distribution
12: if the Active phase triggered then
13: Generate synthetic data and apply label manip-
ulation
14: Merge with local training set
15: end if
16: Upload poisoned update 6", to server
17: end if
18:  end for
19: end for

C. Adaptive Hybrid Loss Function and Adversarial Attack

Modeling and Derivation of Loss Function

To enhance the stability and fidelity of training in our
conditional GAN-based data reconstruction framework, we
propose an adaptive hybrid loss function that combines L2
loss, a modified L1 loss, and cross-entropy loss. This formu-
lation is specifically designed to address the unique challenges
of adversarial training in CFL, where both precision and
robustness to outliers are crucial—particularly during the early
stages of training.

Let x € R”™ denote the ground truth data, and £ € R"
denote the output of the generator. The overall loss function
is defined as:

»Clotal — »Cadaptive (.’E, ‘%) +a- »CCE(yv g); (2)

where Lcg is the cross-entropy loss between the true label y
and predicted label ¢, and « is a balancing coefficient.

The core component, Ladapive, iS defined as a piecewise
function that switches between L2 and L1 penalties based on
the prediction error magnitude:

if ||z — z|| <6,

3
it e —al|>5 O

112
~ T —I
ACadaptive(xax) = {L\ Hl‘ |2££
. - 1

where § is a predefined threshold that determines the switching
point between L2 and L1 behavior, and A is a weighting factor
applied to the L1 term.

This formulation allows the model to emphasize quadratic
penalties for small errors—promoting fine-grained approxima-
tion—while applying linear penalties to large errors, thereby
enhancing robustness and training stability. This dynamic
mechanism is particularly advantageous during the early stages
of GAN training when output deviation is high.
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To further understand its optimization behavior, we derive
the gradient of the adaptive loss with respect to the generator
output Z:
if |z — 2| <0,
if ||z — z|| > 9.

aﬁadaptive _ 2(-% - I),

o | A-sign(d — ), @

This gradient formulation reveals that the L2 region of-
fers smooth and continuous updates, facilitating convergence,
while the L1 region provides bounded gradients, improving
robustness to large deviations or noisy samples. Although
not differentiable at the threshold ||z — &|| = 4, the loss
function remains continuous and piecewise smooth. This mild
discontinuity is common in robust optimization and has been
adopted in practical models, such as Huber loss and Smooth
L1 loss used in Fast R-CNN and VagueGAN.

Our design is inspired by and extends earlier adaptive loss
functions. For example, Smooth L1 provides a continuous
transition between L2 and L1 norms but does not incorporate
semantic conditioning. Recent studies, such as VagueGAN
and Active Reconstruction in VFL [28] apply adaptive loss
functions in generative settings but omit classification-aware
supervision [29]. In contrast, our method integrates a tunable
threshold ¢ for dynamic adjustment, along with cross-entropy
guidance, to enable more effective conditional generation. This
design results in improved convergence and higher reconstruc-
tion quality.

Adaptive Loss Function with L2/L1 Switching
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Fig. 4. Visualization of the adaptive hybrid loss function. The function applies
L2 loss for small prediction errors (||z — || < §) to encourage precision, and
switches to L1 loss for large errors (|| — &|| > ) to improve robustness and
stabilize training.

The behavior of the proposed loss function is illustrated in
Fig. 4. When the prediction error ||« — Z|| is below a threshold
0, the loss adopts a quadratic (L.2) form, encouraging fine-
grained reconstruction and faster convergence—particularly
beneficial in later training stages. When the error exceeds 9,
the loss transitions to a linear (L1) form, mitigating the impact
of large deviations and enhancing training stability. This
adaptive structure balances learning between global patterns
and local details.

By combining L1 and L2 behaviors in a piecewise manner,
the loss enables smooth optimization in low-error regions
while maintaining robustness to outliers. As shown in Fig. 4,
the curve is continuous but adjusts its curvature based on the
error magnitude, supporting stable and progressive learning.

This design ultimately improves the fidelity and realism of
the reconstructed data.

Our adaptive hybrid loss shares conceptual similarities with
the classical Huber loss [30], which also applies a quadratic
penalty to small errors and a linear penalty to large ones. As
depicted in Fig. 5, both functions provide a principled balance
between sensitivity and robustness.

e? if |e] < 0,

LHuber(e) = |6’| _ l(;)
2 b)

1
2 . (&)
) otherwise.

While we adopt the same switching principle, our formu-
lation simplifies the transition mechanism by directly using
L2 and L1 loss without the smooth blending term of Huber
loss. This design is better suited for adversarial settings, where
gradient stability and computation efficiency are essential.

Moreover, our method integrates cross-entropy loss to guide
conditional generation, enabling label-consistent reconstruc-
tion—a key requirement in tasks involving semantic condi-
tioning, which is not supported by the traditional Huber loss.

The parameter § controls the switch between L2 and L1
regimes. A small ¢ results in a faster transition to the robust L1
region, while a large § maintains quadratic sensitivity longer,
which may amplify outlier effects. In our implementation, 4 is
empirically set based on the early-stage average reconstruction
error, ensuring that the model initially benefits from the L1
robustness and gradually transitions to precision via L2. This
threshold-based switching stabilizes adversarial training and
improves both convergence and generative fidelity.

Comparison of Huber Loss and Proposed Hybrid Loss
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Fig. 5. Comparison between classical Huber loss and our proposed hybrid
loss function. The proposed method directly switches between L2 and L1
based on error magnitude, offering simpler gradients and better suitability for
GAN-based training.

Adversarial attack As shown in Fig. 6, the adversary may
prolong and amplify its reconstruction capability by introduc-
ing subtle adversarial interventions. For instance, the adversary
can inject synthesized samples conditioned on the victim’s
target class (e.g., class “5”) but intentionally label them as a
different class (e.g., “10”), thereby slowing the cluster model’s
convergence and creating a persistent window for influence. As
the victim’s local model adapts to these manipulated updates,
its internal representations become biased toward features
associated with the true target class, inadvertently exposing
additional information about that class. The adversary exploits

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on December 13,2025 at 01:54:42 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2025.3637061

Adversary
Poisoned ,—————
updates
i_ — »| Label 4 Label 10 Label 7 O
I ) i b
|
: ™ Normal
| Client 1 updates
- —» Label 2 Label 5 Label 9 'mm = = .
| } i — V| Global
: Model
| L] L]
| L] L]
| L] L]
I - Normal
: Client n updates
= =" Label0 Label SLabel 6 g mm mm
| b4 T R
|
|
I |
: Global model :
L parameters |

Fig. 6. Introduce adversarial influence

this adaptive response by refining its generator to more closely
mimic the revealed characteristics of class “5”, progressively
improving reconstruction fidelity. Because these interventions
conform to the standard training protocol and produce only
subtle perturbations to local updates, they are difficult to detect
using conventional defenses.

IV. DEFENSE

In this section, we first present the defense mechanism
proposed in this paper and then evaluate its performance by
comparing it with representative baseline approaches.

A. Defense Method

After the client clustering phase in Clustered Federated
Learning (CFL) is completed, where each client is assigned to
its designated cluster, the defense mechanism is activated and
remains effective throughout the subsequent training process.
Integrated into the system architecture, it enables clients to
locally apply defense strategies that mitigate potential at-
tack risks, safeguard data privacy, and minimize performance
degradation.

The defense mechanism adopts two main strategies:

1) Differential Privacy in Local Training: Clients inject

noise into model parameters during local training, with
the noise scale increasing as training progresses. A
randomized mechanism M satisfies (g, 0)-differential
privacy if for any pair of neighboring datasets D and
D’, and any subset of outputs S, the following condition
holds:

Pr[M(D) € S] < ¢ - Pr[M(D') € S]+6  (6)

where ¢ is the privacy budget that controls the degree
of information leakage (smaller £ implies stronger pri-
vacy), and § is a relaxation parameter representing the
maximum tolerated failure probability.

2) Dynamic Adjustment Strategy: Clients dynamically
adjust the probability of adding DP noise based on two
factors: data reconstruction similarity and local model
accuracy. This approach ensures a balance between
privacy protection and training effectiveness.

The following sections elaborate on the implementation

details, theoretical basis, and practical impact of these mech-
anisms across different stages of the training process.

B. Adaptive Privacy Mechanism

As shown in Algorithm III, our defense method is
lightweight, adaptive, and suitable for resource-constrained
environments such as IoT. It comprises three tightly integrated
components:

1) Privacy Budget Decay: We employ a cosine-based
decay function to gradually reduce the privacy budget
€ across training rounds. The mechanism starts with
weaker noise to ensure convergence and gradually in-
creases protection as reconstruction risk accumulates.

2) Layer-wise Selective Noise Injection: As shown in Fig.
7, rather than perturbing the entire model uniformly,
stronger noise is applied to deep layers that capture sen-
sitive features, while lighter noise is injected into early
convolutional layers to preserve general representation
quality and reduce computational overhead.

3) Real-time Similarity-Guided Adaptation: Clients esti-
mate local reconstruction similarity using a lightweight
GAN module and dynamically adjust the probability and
strength of noise injection. When both model accuracy
and similarity risk are high, stronger protection is acti-
vated.

Overview: The defense operates entirely locally on each
client, requiring no trusted server or encrypted communication,
making it ideal for federated deployments in edge environ-
ments.

Decay Function Explanation:
computed as:

The privacy budget € is

round
I [P1 + @2 7

?3
This cosine-like decay ensures a smooth and monotonic re-
duction of the privacy budget over training rounds, avoiding
abrupt jumps that could destabilize model training. Compared
to linear decay, it allocates more noise in later stages—when
attacks are more effective—thereby improving the privacy-
utility trade-off.

Formal Privacy Budget Composition: Following the
Gaussian mechanism and standard composition theorems,
the cumulative privacy cost of the proposed layer-wise LDP
defense can be approximated as:

€total =

L A2
V2T log(1/6) Z ; (8)
where A; and o; denote the sensmwty and noise scale at
layer [, respectively. This bound ensures that the composed
leakage remains within a controlled (egta1, 6) privacy bud-
get. The derivation aligns with the moments accountant

analysis used in prior adaptive DP-FL studies [31].
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C. Lightweight Design for IoT Deployment

To address the constraints of resource-limited edge and IoT
environments, we propose a lightweight and adaptive defense
mechanism based on Local Differential Privacy (LDP). Clients
perturb model parameters locally before transmission, elimi-
nating the need for centralized coordination or computationally
expensive cryptographic protocols.

Our method introduces no additional communication over-
head, as all operations are performed entirely on-device.
By selectively injecting noise into early convolutional lay-
ers—which primarily encode general features and contain
fewer parameters—we reduce computational cost while avoid-
ing excessive privacy noise, thereby achieving layer-aware and
resource-efficient protection.

To further adapt to evolving training dynamics and adversar-
ial threats, we incorporate a feedback-driven noise modulation
mechanism that dynamically adjusts noise levels in response to
real-time indicators such as model accuracy and reconstruction
risk. This design remains fully local and lightweight, ensuring
suitability for deployment in IoT environments, including
wearable sensors, smart home hubs, and industrial edge nodes.

Compared to static or uniform-noise defenses, our approach
features:

o Selective layer-wise protection, minimizing unnecessary
overhead.

« Real-time adaptive noise scheduling, enhancing robust-
ness.

o IoT-oriented design, ensuring low computational and
communication costs.

In summary, our method provides a modular, adaptive, and
low-overhead privacy solution tailored for CFL in heteroge-
neous IoT settings.

V. EXPERIMENTS
A. Datasets and Experiment settings

b2
2] h — I
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s
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Fig. 8. Handwriting written by adults (left) and children (right) respectively.

Algorithm 3 Adaptive Privacy Defense in CFL Clients
Require: Total rounds 7', initial privacy budget ¢, thresholds
01 (accuracy), 0o (similarity)

1: for each round ¢ =1 to 7" do

2:  for each benign client ¢ do

3: Receive cluster model 9; from server

4

5

Train local model on private data, obtain update 61
Estimate local accuracy A and reconstruction simi-
larity s

6: (1) Privacy Budget Decay:

7: Update € using decay function (Eq. 7)

8: (2) Adaptive Control:

9: if A > 60, and s > 05 then

10: Set noise probability p < ppign, sensitivity s. ¢
Se + 01

11: else if A < 6; and s > 05 then

12: Set noise probability p ¢— Pmed, S€nsitivity s, <—

c 62

13: else

14: Maintain p and s.

15: end if

16: (3) Selective Noise Injection:

17: if random(0, 1) < p then

18: Inject Gaussian noise (0, s./€) to sensitive lay-
ers

19: end if

20: Upload perturbed update 67} -.pp O server

21:  end for

22: end for

1) Datasets: We evaluate our reconstruction attack and
defense mechanisms using two datasets under a controlled yet
representative experimental setup.

The first dataset is the standard MNIST dataset, containing
60,000 training and 10,000 test grayscale images of handwrit-
ten digits (0-9), resized to 32 x 32 pixels. To simulate a non-
IID setting, we apply random rotations to a subset of images,
introducing feature skew and intra-class variability, thereby
mimicking realistic distribution shifts in federated learning.

The second dataset, CMNIST, is a custom collection of
5,400 grayscale images of handwritten Chinese numerals (0-
9), sourced from two demographic groups: adults and children.
This natural division forms semantically meaningful clusters,
reflecting the distributional heterogeneity central to Clustered
Federated Learning (CFL). Fig. 8 illustrates this distinction,
with samples from adults on the left and children on the right.

We focus on handwritten digit datasets due to their visual
interpretability and established use in evaluating generative
models. CMNIST further enables cluster-level heterogeneity,
aligning with the CFL framework and allowing controlled
evaluation of privacy risks both across and within clusters.

Justification of Dataset Selection. While MNIST and
CMNIST are canonical benchmarks, they allow controlled
evaluation of reconstruction quality and privacy—utility trade-
offs without external biases from heterogeneous real-world
datasets. Such controlled settings are widely adopted in recent
IoT-FL works [32], ensuring fair comparison and reproducibil-
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Fig. 9. Allocation of datasets.

ity. Future work will extend the evaluation to more complex
IoT datasets (e.g., CIC-IDS2017, 10T23) once large-scale
clustered data become available.

2) Model architecture and hyper-parameters: In our ex-
periments, we used a convolutional neural network (CNN) for
classification tasks. For the CMNIST dataset, the input size is
64 x 64, and for MNIST, it is 32 x 32. The network consists
of three convolutional layers with 32, 64, and 128 filters, each
using 3x3 kernels, strides of 2, and Leaky ReL.U activations,
followed by max pooling and two fully connected layers with
256 neurons each, ending with a 10-neuron softmax layer. The
discriminator has an 11-neuron output layer and the generator
uses three deconvolutional layers, generating 32x32 images for
MNIST and 64x64 images for CMNIST.

For MNIST, each client trains for two local epochs per
round with an initial learning rate of 10~%, decaying by 10~
per round, over a total of 100 rounds. The adversary’s GAN is
trained for 10 epochs per round, with initial learning rates of
8 x 10~° for the discriminator and 8 x 10~ for the generator,
both decaying by 10 x 10~7 per round.

For CMNIST, the learning rate are 8 x 10~% for the local
model and discriminator, and 8 %« 10~° for the generator, all
decaying by 10~7. The remaining hyperparameters are similar
to those used for MNIST.

3) Experiment setting: We conducted two sets of exper-
iments. In the CFL setting, the adversary can only target
clients within its own cluster; therefore, we evaluate attack
effectiveness by varying the dataset and the number of clients
per cluster.

Experiment 1 (6 clients, 2 clusters): As shown in Fig. 9, for
the CMNIST dataset, client 1-3 are assigned data featuring
adults, whereas the remaining three clients receive child-
centric data. Each client possesses data covering all 10 labels,

Client 1
(Adverary )

Client 5

Client 2 Client 6
Client 3
Client 4 Client 8

CMNIST allocated to 8 client, client 3 and client 7 with
60 degrees counter-clockwise rotated, client 4 and client
8 with 60 degrees clockwise rotated

Client 7

Client 1 (Adversary)  Client 2 Client 3 Client 4

of=I-k=

Client 5 Client 6 Client 7 Client 8

dEES

MNIST allocated to 8 client

Q

and client 1 is designated as adversary.

For the MNIST dataset, we evenly distribute the entire
training set among six clients, introducing feature skew via
rotations. Specifically, the data of clients 2 and 3 are rotated 90
degrees clockwise and counterclockwise, respectively, while
the data of clients 4, 5, and 6 are rotated 180 degrees.

Experiment 2 (8 clients, 2 clusters — 4 clients per cluster):
For the CMNIST dataset, we applied similar data augmenta-
tion techniques: client 3 and client 4 were rotated 60 degrees
clockwise and counterclockwise, respectively. For MNIST,
additional rotation angles were applied to simulate further
feature skew. Client 1 is again set as the adversary.

B. Client-level Attack

In this section, we evaluate the performance of our client-
level data reconstruction attack. Within the CFL setting, the
adversary systematically targets clients inside its own cluster,
one victim at a time. As shown in Fig. 10, the reconstructed
samples closely resemble the characteristics of the targeted
client’s data.

For CMNIST, attacks on specific clients, such as client 2 and
client 3, reveal distinct features, such as skewed versus straight
lines, highlighting the adversary’s ability to link attributes to
individual clients. Similar results are observed for MNIST,
where rotated data produce characteristic reconstruction pat-
terns.

Further analysis demonstrates that the attack remains effec-
tive even with limited parameter eavesdropping. As illustrated
in Fig. 11, access to only a subset of the victim’s parameters
is sufficient for achieving notable reconstruction quality. Table
I shows that as the eavesdropping level increases to approxi-
mately 60%, the similarity of the reconstructed data surpasses
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TABLE I
SIMILARITY OF DIFFERENT RATIO OF EAVESDROPPING.
Scenarios 6 clients
Datasets FL | CFL(0%) | CFL-20% | CFL-40% | CFL-60% | CFL-80% | CFL-100%
CMNIST 0.5 0.727 0.704 0.702 0.719 0.738 0.758
MNIST 0.413 0.553 0.545 0.553 0.562 0.571 0.575
Scenario 8 clients
Datasets FL CFL(0%) | CFL-20% | CFL-40% | CFL-60% | CFL-80% | CFL-100%
CMNIST 0.618 0.693 0.677 0.697 0.705 0.728 0.722
MNIST 0.386 0.523 0.532 0.536 0.544 0.56 0.572
ame TE 35 5 F 3 . « FLOPs Efficiency: Inverse of floating-point operation
CaisT £ 503 wist AP
v I & E X z
e ESR
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Fig. 10. Client-level attack.
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Fig. 11. Effects of different ratio of eavesdropping.

that observed in the baseline CFL scenario. Importantly, even
at lower levels of parameter access, the attack’s effectiveness
exceeds that in conventional FL settings, although it remains
slightly below the performance achieved in full CFL cases.

These findings underscore the urgent need for robust de-
fenses in CFL environments.

C. Evaluation of Defense Effectiveness and Resource Trade-
offs

To comprehensively evaluate the effectiveness and prac-
ticality of our proposed defense mechanism, we compare
three strategies in terms of accuracy, privacy protection, and
resource efficiency:

o No Defense (baseline),
o Plain Differential Privacy (fixed noise with ¢ = 1.0),
o Our Adaptive Defense (budget decay + selective layer-
wise noise injection).
1) Privacy-Utility-Efficiency Trade-off: Fig. 12 presents a
radar chart summarizing the performance of each method
across four key metrics:

e Accuracy: Post-defense model classification perfor-
mance.

o Privacy Protection: Measured as 1 — cosine similarity
between reconstructed and true samples.

o Memory Efficiency: Inverse of memory usage (MB).

No Defense
—— Plain DP
—— Our Adaptive Defense

Fig. 12. Radar chart comparing three defense strategies in terms of accuracy,
privacy, and resource efficiency.

Compared with Plain DP, our adaptive defense exhibits a
superior overall balance:

o It reduces cosine similarity by 28.7% compared to no
defense (from 0.689 to 0.491),

e Maintains only a 3.3% drop in accuracy relative to the
unprotected model (84.6% — 81.3%),

o Achieves 23.4% lower memory usage and 43% fewer
FLOPs than Plain DP,

o Requires no additional communication cost.

No defense 6 clients 8 clients
CMNIST
HHEHEEBHEH BEREBE
HEHBEER HEAEBEAEB
MNIST [s]s]s]=]a)s] BHBAEA
HEHEEEE HEBBER
BEHEEEER HEABEE
2] 2]2]2] 5] 5] HEBABA

Fig. 13. Defense effect. Take class 5 in CMNIST and class 3 in MNIST as
examples, respectively.
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Fig. 14. Comparison between baseline and our method

2) Visual Evaluation of Reconstructed Samples: As illus-
trated in Fig. 13, without defense, reconstructed samples retain
strong personal characteristics. Plain DP reduces fidelity but
introduces visible noise. In contrast, our method effectively
obfuscates user-specific traits while preserving semantic struc-
ture, thereby balancing utility and privacy.

3) Lightweight Performance in IoT Context: Fig. 14 sum-
marizes defense overhead. Our selective perturbation of sensi-
tive layers, guided by dynamic similarity estimation, leads to
a substantial reduction in computational load and DP noise
processing time—by 23.3% and 45.5%, respectively. All
operations are performed locally on the client, making the
method ideal for low-power federated deployments.

These findings validate our method as a robust and efficient
privacy-preserving mechanism, particularly well suited for
CFL in resource-constrained environments such as IoT.

VI. CONCLUSION

In this study, we identify and empirically validate a critical
vulnerability in Clustered Federated Learning (CFL) systems.
We propose a client-level data reconstruction attack that
leverages passive eavesdropping and conditional GANs to
exploit intra-cluster similarities, thereby reconstructing pri-
vate training data. Unlike conventional server-centric or full-
gradient attacks, our approach operates under realistic con-
straints—requiring only partial parameter access from within
the victim’s cluster—yet achieves notably higher reconstruc-
tion fidelity.

This threat model is particularly relevant for practical CFL
deployments, where clients often communicate over insecure
channels and cluster-based training is increasingly adopted.
Our findings underscore the urgency of revisiting privacy
assumptions in CFL and of developing more robust, context-
aware defenses.

To this end, we propose a lightweight and adaptive defense
mechanism grounded in Local Differential Privacy (LDP). By
dynamically adjusting privacy budgets and applying layer-wise
protection, our method effectively balances privacy preser-
vation with model utility, while remaining feasible for de-
ployment in resource-constrained environments such as IoT.
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Moreover, The proposed layer-wise LDP mechanism is com-
patible with secure aggregation, homomorphic encryption, or
blockchain-based client verification schemes. For example,
recent works in IoT-FL contexts integrate federated learn-
ing with blockchain architectures to ensure auditability and
tamper-resistance [33], [34]. Such hybrid integration can en-
hance robustness without modifying the local privacy module.
We plan to explore such integration in future deployments.

Overall, the proposed attack and defense framework exposes
previously underestimated risks in CFL systems and provides
a foundation for developing more nuanced, scalable, and prac-
tical privacy-preserving strategies in future federated learning
research.
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